My Project
ipshell.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8#include "kernel/mod2.h"
9
10#include "factory/factory.h"
11
12#include "misc/options.h"
13#include "misc/mylimits.h"
14#include "misc/intvec.h"
15#include "misc/prime.h"
16
17#include "coeffs/numbers.h"
18#include "coeffs/coeffs.h"
19
20#include "coeffs/rmodulon.h"
21#include "coeffs/longrat.h"
22
26
27#include "polys/prCopy.h"
28#include "polys/matpol.h"
29
30#include "polys/shiftop.h"
31#include "polys/weight.h"
32#include "polys/clapsing.h"
33
34
37
38#include "kernel/polys.h"
39#include "kernel/ideals.h"
40
43
44#include "kernel/GBEngine/syz.h"
46#include "kernel/GBEngine/kutil.h" // denominator_list
47
50
54
56
57#include "Singular/lists.h"
58#include "Singular/attrib.h"
59#include "Singular/ipconv.h"
61#include "Singular/ipshell.h"
62#include "Singular/maps_ip.h"
63#include "Singular/tok.h"
64#include "Singular/ipid.h"
65#include "Singular/subexpr.h"
66#include "Singular/fevoices.h"
67#include "Singular/sdb.h"
68
69#include <cmath>
70#include <ctype.h>
71
73
74#include "polys/clapsing.h"
75
76#ifdef SINGULAR_4_2
77#include "Singular/number2.h"
78#include "coeffs/bigintmat.h"
79#endif
82const char *lastreserved=NULL;
83
85
86/*0 implementation*/
87
88const char * iiTwoOps(int t)
89{
90 if (t<127)
91 {
92 STATIC_VAR char ch[2];
93 switch (t)
94 {
95 case '&':
96 return "and";
97 case '|':
98 return "or";
99 default:
100 ch[0]=t;
101 ch[1]='\0';
102 return ch;
103 }
104 }
105 switch (t)
106 {
107 case COLONCOLON: return "::";
108 case DOTDOT: return "..";
109 //case PLUSEQUAL: return "+=";
110 //case MINUSEQUAL: return "-=";
111 case MINUSMINUS: return "--";
112 case PLUSPLUS: return "++";
113 case EQUAL_EQUAL: return "==";
114 case LE: return "<=";
115 case GE: return ">=";
116 case NOTEQUAL: return "<>";
117 default: return Tok2Cmdname(t);
118 }
119}
120
121int iiOpsTwoChar(const char *s)
122{
123/* not handling: &&, ||, ** */
124 if (s[1]=='\0') return s[0];
125 else if (s[2]!='\0') return 0;
126 switch(s[0])
127 {
128 case '.': if (s[1]=='.') return DOTDOT;
129 else return 0;
130 case ':': if (s[1]==':') return COLONCOLON;
131 else return 0;
132 case '-': if (s[1]=='-') return MINUSMINUS;
133 else return 0;
134 case '+': if (s[1]=='+') return PLUSPLUS;
135 else return 0;
136 case '=': if (s[1]=='=') return EQUAL_EQUAL;
137 else return 0;
138 case '<': if (s[1]=='=') return LE;
139 else if (s[1]=='>') return NOTEQUAL;
140 else return 0;
141 case '>': if (s[1]=='=') return GE;
142 else return 0;
143 case '!': if (s[1]=='=') return NOTEQUAL;
144 else return 0;
145 }
146 return 0;
147}
148
149static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
150{
151 char buffer[22];
152 int l;
153 char buf2[128];
154
155 if(fullname) snprintf(buf2,128, "%s::%s", "", IDID(h));
156 else snprintf(buf2,128, "%s", IDID(h));
157
158 Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
159 if (h == currRingHdl) PrintS("*");
160 PrintS(Tok2Cmdname((int)IDTYP(h)));
161
162 ipListFlag(h);
163 switch(IDTYP(h))
164 {
165 case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
166 case INT_CMD: Print(" %d",IDINT(h)); break;
167 case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
168 case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
169 break;
170 case POLY_CMD:
171 case VECTOR_CMD:if (c)
172 {
173 PrintS(" ");wrp(IDPOLY(h));
174 if(IDPOLY(h) != NULL)
175 {
176 Print(", %d monomial(s)",pLength(IDPOLY(h)));
177 }
178 }
179 break;
180 case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));// and continue
181 case IDEAL_CMD: Print(", %u generator(s)",
182 IDELEMS(IDIDEAL(h))); break;
183 case MAP_CMD:
184 Print(" from %s",IDMAP(h)->preimage); break;
185 case MATRIX_CMD:Print(" %u x %u"
188 );
189 break;
190 case SMATRIX_CMD:Print(" %u x %u"
191 ,(int)(IDIDEAL(h)->rank)
192 ,IDELEMS(IDIDEAL(h))
193 );
194 break;
195 case PACKAGE_CMD:
197 break;
198 case PROC_CMD: if((IDPROC(h)->libname!=NULL)
199 && (strlen(IDPROC(h)->libname)>0))
200 Print(" from %s",IDPROC(h)->libname);
201 if(IDPROC(h)->language==LANG_C)
202 PrintS(" (C)");
203 if(IDPROC(h)->is_static)
204 PrintS(" (static)");
205 break;
206 case STRING_CMD:
207 {
208 char *s;
209 l=strlen(IDSTRING(h));
210 memset(buffer,0,sizeof(buffer));
211 strncpy(buffer,IDSTRING(h),si_min(l,20));
212 if ((s=strchr(buffer,'\n'))!=NULL)
213 {
214 *s='\0';
215 }
216 PrintS(" ");
217 PrintS(buffer);
218 if((s!=NULL) ||(l>20))
219 {
220 Print("..., %d char(s)",l);
221 }
222 break;
223 }
224 case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
225 break;
226 case RING_CMD:
227 if ((IDRING(h)==currRing) && (currRingHdl!=h))
228 PrintS("(*)"); /* this is an alias to currRing */
229 //Print(" ref:%d",IDRING(h)->ref);
230#ifdef RDEBUG
232 Print(" <%lx>",(long)(IDRING(h)));
233#endif
234 break;
235#ifdef SINGULAR_4_2
236 case CNUMBER_CMD:
237 { number2 n=(number2)IDDATA(h);
238 Print(" (%s)",nCoeffName(n->cf));
239 break;
240 }
241 case CMATRIX_CMD:
243 Print(" %d x %d (%s)",
244 b->rows(),b->cols(),
245 nCoeffName(b->basecoeffs()));
246 break;
247 }
248#endif
249 /*default: break;*/
250 }
251 PrintLn();
252}
253
255{
256 BOOLEAN oldShortOut = FALSE;
257
258 if (currRing != NULL)
259 {
260 oldShortOut = currRing->ShortOut;
261 currRing->ShortOut = 1;
262 }
263 int t=v->Typ();
264 Print("// %s %s ",v->Name(),Tok2Cmdname(t));
265 switch (t)
266 {
267 case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
268 case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
269 ((intvec*)(v->Data()))->cols()); break;
270 case MATRIX_CMD:Print(" %u x %u\n" ,
271 MATROWS((matrix)(v->Data())),
272 MATCOLS((matrix)(v->Data())));break;
273 case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
274 case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
275
276 case PROC_CMD:
277 case RING_CMD:
278 case IDEAL_CMD: PrintLn(); break;
279
280 //case INT_CMD:
281 //case STRING_CMD:
282 //case INTVEC_CMD:
283 //case POLY_CMD:
284 //case VECTOR_CMD:
285 //case PACKAGE_CMD:
286
287 default:
288 break;
289 }
290 v->Print();
291 if (currRing != NULL)
292 currRing->ShortOut = oldShortOut;
293}
294
295static void killlocals0(int v, idhdl * localhdl, const ring r)
296{
297 idhdl h = *localhdl;
298 while (h!=NULL)
299 {
300 int vv;
301 //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
302 if ((vv=IDLEV(h))>0)
303 {
304 if (vv < v)
305 {
306 if (iiNoKeepRing)
307 {
308 //PrintS(" break\n");
309 return;
310 }
311 h = IDNEXT(h);
312 //PrintLn();
313 }
314 else //if (vv >= v)
315 {
316 idhdl nexth = IDNEXT(h);
317 killhdl2(h,localhdl,r);
318 h = nexth;
319 //PrintS("kill\n");
320 }
321 }
322 else
323 {
324 h = IDNEXT(h);
325 //PrintLn();
326 }
327 }
328}
329
330void killlocals_rec(idhdl *root,int v, ring r)
331{
332 idhdl h=*root;
333 while (h!=NULL)
334 {
335 if (IDLEV(h)>=v)
336 {
337// Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
338 idhdl n=IDNEXT(h);
339 killhdl2(h,root,r);
340 h=n;
341 }
342 else if (IDTYP(h)==PACKAGE_CMD)
343 {
344 // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
345 if (IDPACKAGE(h)!=basePack)
346 killlocals_rec(&(IDRING(h)->idroot),v,r);
347 h=IDNEXT(h);
348 }
349 else if (IDTYP(h)==RING_CMD)
350 {
351 if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
352 // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
353 {
354 // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
355 killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
356 }
357 h=IDNEXT(h);
358 }
359 else
360 {
361// Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
362 h=IDNEXT(h);
363 }
364 }
365}
367{
368 if (L==NULL) return FALSE;
369 BOOLEAN changed=FALSE;
370 int n=L->nr;
371 for(;n>=0;n--)
372 {
373 leftv h=&(L->m[n]);
374 void *d=h->data;
375 if ((h->rtyp==RING_CMD)
376 && (((ring)d)->idroot!=NULL))
377 {
378 if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
379 killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
380 }
381 else if (h->rtyp==LIST_CMD)
382 changed|=killlocals_list(v,(lists)d);
383 }
384 return changed;
385}
386void killlocals(int v)
387{
388 BOOLEAN changed=FALSE;
390 ring cr=currRing;
391 if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
392 //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
393
394 killlocals_rec(&(basePack->idroot),v,currRing);
395
397 {
398 int t=iiRETURNEXPR.Typ();
399 if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
400 {
402 if (((ring)h->data)->idroot!=NULL)
403 killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
404 }
405 else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
406 {
408 changed |=killlocals_list(v,(lists)h->data);
409 }
410 }
411 if (changed)
412 {
414 if (currRingHdl==NULL)
416 else if(cr!=currRing)
417 rChangeCurrRing(cr);
418 }
419
420 if (myynest<=1) iiNoKeepRing=TRUE;
421 //Print("end killlocals >= %d\n",v);
422 //listall();
423}
424
425void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
426{
427 package savePack=currPack;
428 idhdl h,start;
429 BOOLEAN all = typ<0;
430 BOOLEAN really_all=FALSE;
431
432 if ( typ==0 )
433 {
434 if (strcmp(what,"all")==0)
435 {
436 if (currPack!=basePack)
437 list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
438 really_all=TRUE;
439 h=basePack->idroot;
440 }
441 else
442 {
443 h = ggetid(what);
444 if (h!=NULL)
445 {
446 if (iterate) list1(prefix,h,TRUE,fullname);
447 if (IDTYP(h)==ALIAS_CMD) PrintS("A");
448 if ((IDTYP(h)==RING_CMD)
449 //|| (IDTYP(h)==PACKAGE_CMD)
450 )
451 {
452 h=IDRING(h)->idroot;
453 }
454 else if(IDTYP(h)==PACKAGE_CMD)
455 {
457 //Print("list_cmd:package\n");
458 all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
459 h=IDPACKAGE(h)->idroot;
460 }
461 else
462 {
463 currPack=savePack;
464 return;
465 }
466 }
467 else
468 {
469 Werror("%s is undefined",what);
470 currPack=savePack;
471 return;
472 }
473 }
474 all=TRUE;
475 }
476 else if (RingDependend(typ))
477 {
478 h = currRing->idroot;
479 }
480 else
481 h = IDROOT;
482 start=h;
483 while (h!=NULL)
484 {
485 if ((all
486 && (IDTYP(h)!=PROC_CMD)
487 &&(IDTYP(h)!=PACKAGE_CMD)
488 &&(IDTYP(h)!=CRING_CMD)
489 )
490 || (typ == IDTYP(h))
491 || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
492 )
493 {
494 list1(prefix,h,start==currRingHdl, fullname);
495 if ((IDTYP(h)==RING_CMD)
496 && (really_all || (all && (h==currRingHdl)))
497 && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
498 {
499 list_cmd(0,IDID(h),"// ",FALSE);
500 }
501 if (IDTYP(h)==PACKAGE_CMD && really_all)
502 {
503 package save_p=currPack;
505 list_cmd(0,IDID(h),"// ",FALSE);
506 currPack=save_p;
507 }
508 }
509 h = IDNEXT(h);
510 }
511 currPack=savePack;
512}
513
514void test_cmd(int i)
515{
516 int ii;
517
518 if (i<0)
519 {
520 ii= -i;
521 if (ii < 32)
522 {
523 si_opt_1 &= ~Sy_bit(ii);
524 }
525 else if (ii < 64)
526 {
527 si_opt_2 &= ~Sy_bit(ii-32);
528 }
529 else
530 WerrorS("out of bounds\n");
531 }
532 else if (i<32)
533 {
534 ii=i;
535 if (Sy_bit(ii) & kOptions)
536 {
537 WarnS("Gerhard, use the option command");
538 si_opt_1 |= Sy_bit(ii);
539 }
540 else if (Sy_bit(ii) & validOpts)
541 si_opt_1 |= Sy_bit(ii);
542 }
543 else if (i<64)
544 {
545 ii=i-32;
546 si_opt_2 |= Sy_bit(ii);
547 }
548 else
549 WerrorS("out of bounds\n");
550}
551
553{
554 int rc = 0;
555 while (v!=NULL)
556 {
557 switch (v->Typ())
558 {
559 case INT_CMD:
560 case POLY_CMD:
561 case VECTOR_CMD:
562 case NUMBER_CMD:
563 rc++;
564 break;
565 case INTVEC_CMD:
566 case INTMAT_CMD:
567 rc += ((intvec *)(v->Data()))->length();
568 break;
569 case MATRIX_CMD:
570 case IDEAL_CMD:
571 case MODUL_CMD:
572 {
573 matrix mm = (matrix)(v->Data());
574 rc += mm->rows() * mm->cols();
575 }
576 break;
577 case LIST_CMD:
578 rc+=((lists)v->Data())->nr+1;
579 break;
580 default:
581 rc++;
582 }
583 v = v->next;
584 }
585 return rc;
586}
587
589{
590 sleftv vf;
591 if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
592 {
593 WerrorS("link expected");
594 return TRUE;
595 }
596 si_link l=(si_link)vf.Data();
597 if (vf.next == NULL)
598 {
599 WerrorS("write: need at least two arguments");
600 return TRUE;
601 }
602
603 BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
604 if (b)
605 {
606 const char *s;
607 if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
608 else s=sNoName_fe;
609 Werror("cannot write to %s",s);
610 }
611 vf.CleanUp();
612 return b;
613}
614
615leftv iiMap(map theMap, const char * what)
616{
617 idhdl w,r;
618 leftv v;
619 int i;
620 nMapFunc nMap;
621
622 r=IDROOT->get(theMap->preimage,myynest);
623 if ((currPack!=basePack)
624 &&((r==NULL) || ((r->typ != RING_CMD) )))
625 r=basePack->idroot->get(theMap->preimage,myynest);
626 if ((r==NULL) && (currRingHdl!=NULL)
627 && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
628 {
629 r=currRingHdl;
630 }
631 if ((r!=NULL) && (r->typ == RING_CMD))
632 {
633 ring src_ring=IDRING(r);
634 if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
635 {
636 Werror("can not map from ground field of %s to current ground field",
637 theMap->preimage);
638 return NULL;
639 }
640 if (IDELEMS(theMap)<src_ring->N)
641 {
642 theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
643 IDELEMS(theMap)*sizeof(poly),
644 (src_ring->N)*sizeof(poly));
645#ifdef HAVE_SHIFTBBA
646 if (rIsLPRing(src_ring))
647 {
648 // src_ring [x,y,z,...]
649 // curr_ring [a,b,c,...]
650 //
651 // map=[a,b,c,d] -> [a,b,c,...]
652 // map=[a,b] -> [a,b,0,...]
653
654 short src_lV = src_ring->isLPring;
655 short src_ncGenCount = src_ring->LPncGenCount;
656 short src_nVars = src_lV - src_ncGenCount;
657 int src_nblocks = src_ring->N / src_lV;
658
659 short dest_nVars = currRing->isLPring - currRing->LPncGenCount;
660 short dest_ncGenCount = currRing->LPncGenCount;
661
662 // add missing NULL generators
663 for(i=IDELEMS(theMap); i < src_lV - src_ncGenCount; i++)
664 {
665 theMap->m[i]=NULL;
666 }
667
668 // remove superfluous generators
669 for(i = src_nVars; i < IDELEMS(theMap); i++)
670 {
671 if (theMap->m[i] != NULL)
672 {
673 p_Delete(&(theMap->m[i]), currRing);
674 theMap->m[i] = NULL;
675 }
676 }
677
678 // add ncgen mappings
679 for(i = src_nVars; i < src_lV; i++)
680 {
681 short ncGenIndex = i - src_nVars;
682 if (ncGenIndex < dest_ncGenCount)
683 {
684 poly p = p_One(currRing);
685 p_SetExp(p, dest_nVars + ncGenIndex + 1, 1, currRing);
686 p_Setm(p, currRing);
687 theMap->m[i] = p;
688 }
689 else
690 {
691 theMap->m[i] = NULL;
692 }
693 }
694
695 // copy the first block to all other blocks
696 for(i = 1; i < src_nblocks; i++)
697 {
698 for(int j = 0; j < src_lV; j++)
699 {
700 theMap->m[(i * src_lV) + j] = p_Copy(theMap->m[j], currRing);
701 }
702 }
703 }
704 else
705 {
706#endif
707 for(i=IDELEMS(theMap);i<src_ring->N;i++)
708 theMap->m[i]=NULL;
709#ifdef HAVE_SHIFTBBA
710 }
711#endif
712 IDELEMS(theMap)=src_ring->N;
713 }
714 if (what==NULL)
715 {
716 WerrorS("argument of a map must have a name");
717 }
718 else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
719 {
720 char *save_r=NULL;
722 sleftv tmpW;
723 tmpW.Init();
724 tmpW.rtyp=IDTYP(w);
725 if (tmpW.rtyp==MAP_CMD)
726 {
727 tmpW.rtyp=IDEAL_CMD;
728 save_r=IDMAP(w)->preimage;
729 IDMAP(w)->preimage=0;
730 }
731 tmpW.data=IDDATA(w);
732 // check overflow
733 BOOLEAN overflow=FALSE;
734 if ((tmpW.rtyp==IDEAL_CMD)
735 || (tmpW.rtyp==MODUL_CMD)
736 || (tmpW.rtyp==MAP_CMD))
737 {
738 ideal id=(ideal)tmpW.data;
739 long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
740 for(int i=IDELEMS(id)-1;i>=0;i--)
741 {
742 poly p=id->m[i];
743 if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
744 else degs[i]=0;
745 }
746 for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
747 {
748 if (theMap->m[j]!=NULL)
749 {
750 long deg_monexp=pTotaldegree(theMap->m[j]);
751
752 for(int i=IDELEMS(id)-1;i>=0;i--)
753 {
754 poly p=id->m[i];
755 if ((p!=NULL) && (degs[i]!=0) &&
756 ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
757 {
758 overflow=TRUE;
759 break;
760 }
761 }
762 }
763 }
764 omFreeSize(degs,IDELEMS(id)*sizeof(long));
765 }
766 else if (tmpW.rtyp==POLY_CMD)
767 {
768 for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
769 {
770 if (theMap->m[j]!=NULL)
771 {
772 long deg_monexp=pTotaldegree(theMap->m[j]);
773 poly p=(poly)tmpW.data;
774 long deg=0;
775 if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
776 ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
777 {
778 overflow=TRUE;
779 break;
780 }
781 }
782 }
783 }
784 if (overflow)
785#ifdef HAVE_SHIFTBBA
786 // in Letterplace rings the exponent is always 0 or 1! ignore this warning.
787 if (!rIsLPRing(currRing))
788 {
789#endif
790 Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
791#ifdef HAVE_SHIFTBBA
792 }
793#endif
794#if 0
795 if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
796 {
797 v->rtyp=tmpW.rtyp;
798 v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
799 }
800 else
801#endif
802 {
803 if ((tmpW.rtyp==IDEAL_CMD)
804 ||(tmpW.rtyp==MODUL_CMD)
805 ||(tmpW.rtyp==MATRIX_CMD)
806 ||(tmpW.rtyp==MAP_CMD))
807 {
808 v->rtyp=tmpW.rtyp;
809 char *tmp = theMap->preimage;
810 theMap->preimage=(char*)1L;
811 // map gets 1 as its rank (as an ideal)
812 v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
813 theMap->preimage=tmp; // map gets its preimage back
814 }
815 if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
816 {
817 if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
818 {
819 Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
821 if (save_r!=NULL) IDMAP(w)->preimage=save_r;
822 return NULL;
823 }
824 }
825 }
826 if (save_r!=NULL)
827 {
828 IDMAP(w)->preimage=save_r;
829 IDMAP((idhdl)v)->preimage=omStrDup(save_r);
830 v->rtyp=MAP_CMD;
831 }
832 return v;
833 }
834 else
835 {
836 Werror("%s undefined in %s",what,theMap->preimage);
837 }
838 }
839 else
840 {
841 Werror("cannot find preimage %s",theMap->preimage);
842 }
843 return NULL;
844}
845
846#ifdef OLD_RES
847void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
848 intvec ** weights)
849{
850 lists L=liMakeResolv(r,length,rlen,typ0,weights);
851 int i=0;
852 idhdl h;
853 size_t len=strlen(name)+5;
854 char * s=(char *)omAlloc(len);
855
856 while (i<=L->nr)
857 {
858 snprintf(s,len,"%s(%d)",name,i+1);
859 if (i==0)
860 h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
861 else
863 if (h!=NULL)
864 {
865 h->data.uideal=(ideal)L->m[i].data;
866 h->attribute=L->m[i].attribute;
868 Print("//defining: %s as %d-th syzygy module\n",s,i+1);
869 }
870 else
871 {
872 idDelete((ideal *)&(L->m[i].data));
873 Warn("cannot define %s",s);
874 }
875 //L->m[i].data=NULL;
876 //L->m[i].rtyp=0;
877 //L->m[i].attribute=NULL;
878 i++;
879 }
880 omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
882 omFreeSize((ADDRESS)s,strlen(name)+5);
883}
884#endif
885
886//resolvente iiFindRes(char * name, int * len, int *typ0)
887//{
888// char *s=(char *)omAlloc(strlen(name)+5);
889// int i=-1;
890// resolvente r;
891// idhdl h;
892//
893// do
894// {
895// i++;
896// sprintf(s,"%s(%d)",name,i+1);
897// h=currRing->idroot->get(s,myynest);
898// } while (h!=NULL);
899// *len=i-1;
900// if (*len<=0)
901// {
902// Werror("no objects %s(1),.. found",name);
903// omFreeSize((ADDRESS)s,strlen(name)+5);
904// return NULL;
905// }
906// r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
907// memset(r,0,(*len)*sizeof(ideal));
908// i=-1;
909// *typ0=MODUL_CMD;
910// while (i<(*len))
911// {
912// i++;
913// sprintf(s,"%s(%d)",name,i+1);
914// h=currRing->idroot->get(s,myynest);
915// if (h->typ != MODUL_CMD)
916// {
917// if ((i!=0) || (h->typ!=IDEAL_CMD))
918// {
919// Werror("%s is not of type module",s);
920// omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
921// omFreeSize((ADDRESS)s,strlen(name)+5);
922// return NULL;
923// }
924// *typ0=IDEAL_CMD;
925// }
926// if ((i>0) && (idIs0(r[i-1])))
927// {
928// *len=i-1;
929// break;
930// }
931// r[i]=IDIDEAL(h);
932// }
933// omFreeSize((ADDRESS)s,strlen(name)+5);
934// return r;
935//}
936
938{
939 int i;
940 resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
941
942 for (i=0; i<l; i++)
943 if (r[i]!=NULL) res[i]=idCopy(r[i]);
944 return res;
945}
946
948{
949 int len=0;
950 int typ0;
951 lists L=(lists)v->Data();
952 intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
953 int add_row_shift = 0;
954 if (weights==NULL)
955 weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
956 if (weights!=NULL) add_row_shift=weights->min_in();
957 resolvente rr=liFindRes(L,&len,&typ0);
958 if (rr==NULL) return TRUE;
959 resolvente r=iiCopyRes(rr,len);
960
961 syMinimizeResolvente(r,len,0);
962 omFreeSize((ADDRESS)rr,len*sizeof(ideal));
963 len++;
964 res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
965 return FALSE;
966}
967
969{
970 sleftv tmp;
971 tmp.Init();
972 tmp.rtyp=INT_CMD;
973 tmp.data=(void *)1;
974 if ((u->Typ()==IDEAL_CMD)
975 || (u->Typ()==MODUL_CMD))
976 return jjBETTI2_ID(res,u,&tmp);
977 else
978 return jjBETTI2(res,u,&tmp);
979}
980
982{
984 l->Init(1);
985 l->m[0].rtyp=u->Typ();
986 l->m[0].data=u->Data();
987 attr *a=u->Attribute();
988 if (a!=NULL)
989 l->m[0].attribute=*a;
990 sleftv tmp2;
991 tmp2.Init();
992 tmp2.rtyp=LIST_CMD;
993 tmp2.data=(void *)l;
995 l->m[0].data=NULL;
996 l->m[0].attribute=NULL;
997 l->m[0].rtyp=DEF_CMD;
998 l->Clean();
999 return r;
1000}
1001
1003{
1004 resolvente r;
1005 int len;
1006 int reg,typ0;
1007 lists l=(lists)u->Data();
1008
1009 intvec *weights=NULL;
1010 int add_row_shift=0;
1011 intvec *ww=NULL;
1012 if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
1013 if (ww!=NULL)
1014 {
1015 weights=ivCopy(ww);
1016 add_row_shift = ww->min_in();
1017 (*weights) -= add_row_shift;
1018 }
1019 //Print("attr:%x\n",weights);
1020
1021 r=liFindRes(l,&len,&typ0);
1022 if (r==NULL) return TRUE;
1023 intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
1024 res->data=(void*)res_im;
1025 omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
1026 //Print("rowShift: %d ",add_row_shift);
1027 for(int i=1;i<=res_im->rows();i++)
1028 {
1029 if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
1030 else break;
1031 }
1032 //Print(" %d\n",add_row_shift);
1033 atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
1034 if (weights!=NULL) delete weights;
1035 return FALSE;
1036}
1037
1039{
1040 int len,reg,typ0;
1041
1042 resolvente r=liFindRes(L,&len,&typ0);
1043
1044 if (r==NULL)
1045 return -2;
1046 intvec *weights=NULL;
1047 int add_row_shift=0;
1048 intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
1049 if (ww!=NULL)
1050 {
1051 weights=ivCopy(ww);
1052 add_row_shift = ww->min_in();
1053 (*weights) -= add_row_shift;
1054 }
1055 //Print("attr:%x\n",weights);
1056
1057 intvec *dummy=syBetti(r,len,&reg,weights);
1058 if (weights!=NULL) delete weights;
1059 delete dummy;
1060 omFreeSize((ADDRESS)r,len*sizeof(ideal));
1061 return reg+1+add_row_shift;
1062}
1063
1065#define BREAK_LINE_LENGTH 80
1067{
1068#ifdef HAVE_SDB
1069 sdb_flags=1;
1070#endif
1071 Print("\n-- break point in %s --\n",VoiceName());
1073 char * s;
1075 s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
1076 loop
1077 {
1078 memset(s,0,BREAK_LINE_LENGTH+4);
1080 if (s[BREAK_LINE_LENGTH-1]!='\0')
1081 {
1082 Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1083 }
1084 else
1085 break;
1086 }
1087 if (*s=='\n')
1088 {
1090 }
1091#if MDEBUG
1092 else if(strncmp(s,"cont;",5)==0)
1093 {
1095 }
1096#endif /* MDEBUG */
1097 else
1098 {
1099 strcat( s, "\n;~\n");
1101 }
1102}
1103
1104lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1105// S mjust eb an ideal, not a module
1106{
1107 int i;
1108 indset save;
1110
1111 hexist = hInit(S, Q, &hNexist);
1112 if (hNexist == 0)
1113 {
1114 intvec *iv=new intvec(rVar(currRing));
1115 for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1116 res->Init(1);
1117 res->m[0].rtyp=INTVEC_CMD;
1118 res->m[0].data=(intvec*)iv;
1119 return res;
1120 }
1122 hMu = 0;
1123 hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1124 hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1125 hpure = (scmon)omAlloc0((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1126 hrad = hexist;
1127 hNrad = hNexist;
1128 radmem = hCreate(rVar(currRing) - 1);
1129 hCo = rVar(currRing) + 1;
1130 hNvar = rVar(currRing);
1132 hSupp(hrad, hNrad, hvar, &hNvar);
1133 if (hNvar)
1134 {
1135 hCo = hNvar;
1136 hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1139 }
1140 if (hCo && (hCo < rVar(currRing)))
1141 {
1143 }
1144 if (hMu!=0)
1145 {
1146 ISet = save;
1147 hMu2 = 0;
1148 if (all && (hCo+1 < rVar(currRing)))
1149 {
1152 i=hMu+hMu2;
1153 res->Init(i);
1154 if (hMu2 == 0)
1155 {
1157 }
1158 }
1159 else
1160 {
1161 res->Init(hMu);
1162 }
1163 for (i=0;i<hMu;i++)
1164 {
1165 res->m[i].data = (void *)save->set;
1166 res->m[i].rtyp = INTVEC_CMD;
1167 ISet = save;
1168 save = save->nx;
1170 }
1172 if (hMu2 != 0)
1173 {
1174 save = JSet;
1175 for (i=hMu;i<hMu+hMu2;i++)
1176 {
1177 res->m[i].data = (void *)save->set;
1178 res->m[i].rtyp = INTVEC_CMD;
1179 JSet = save;
1180 save = save->nx;
1182 }
1184 }
1185 }
1186 else
1187 {
1188 res->Init(0);
1190 }
1191 hKill(radmem, rVar(currRing) - 1);
1192 omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1193 omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1194 omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1196 return res;
1197}
1198
1199int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1200{
1202 BOOLEAN is_qring=FALSE;
1203 const char *id = name->name;
1204
1205 sy->Init();
1206 if ((name->name==NULL)||(isdigit(name->name[0])))
1207 {
1208 WerrorS("object to declare is not a name");
1209 res=TRUE;
1210 }
1211 else
1212 {
1213 if (root==NULL) return TRUE;
1214 if (*root!=IDROOT)
1215 {
1216 if ((currRing==NULL) || (*root!=currRing->idroot))
1217 {
1218 Werror("can not define `%s` in other package",name->name);
1219 return TRUE;
1220 }
1221 }
1222 if (t==QRING_CMD)
1223 {
1224 t=RING_CMD; // qring is always RING_CMD
1225 is_qring=TRUE;
1226 }
1227
1228 if (TEST_V_ALLWARN
1229 && (name->rtyp!=0)
1230 && (name->rtyp!=IDHDL)
1232 {
1233 Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1235 }
1236 {
1237 sy->data = (char *)enterid(id,lev,t,root,init_b);
1238 }
1239 if (sy->data!=NULL)
1240 {
1241 sy->rtyp=IDHDL;
1242 currid=sy->name=IDID((idhdl)sy->data);
1243 if (is_qring)
1244 {
1246 }
1247 // name->name=NULL; /* used in enterid */
1248 //sy->e = NULL;
1249 if (name->next!=NULL)
1250 {
1252 res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1253 }
1254 }
1255 else res=TRUE;
1256 }
1257 name->CleanUp();
1258 return res;
1259}
1260
1262{
1263 attr at=NULL;
1264 if (iiCurrProc!=NULL)
1265 at=iiCurrProc->attribute->get("default_arg");
1266 if (at==NULL)
1267 return FALSE;
1268 sleftv tmp;
1269 tmp.Init();
1270 tmp.rtyp=at->atyp;
1271 tmp.data=at->CopyA();
1272 return iiAssign(p,&tmp);
1273}
1275{
1276 // must be inside a proc, as we simultae an proc_end at the end
1277 if (myynest==0)
1278 {
1279 WerrorS("branchTo can only occur in a proc");
1280 return TRUE;
1281 }
1282 // <string1...stringN>,<proc>
1283 // known: args!=NULL, l>=1
1284 int l=args->listLength();
1285 int ll=0;
1287 if (ll!=(l-1)) return FALSE;
1288 leftv h=args;
1289 // set up the table for type test:
1290 short *t=(short*)omAlloc(l*sizeof(short));
1291 t[0]=l-1;
1292 int b;
1293 int i;
1294 for(i=1;i<l;i++,h=h->next)
1295 {
1296 if (h->Typ()!=STRING_CMD)
1297 {
1298 omFreeBinAddr(t);
1299 Werror("arg %d is not a string",i);
1300 return TRUE;
1301 }
1302 int tt;
1303 b=IsCmd((char *)h->Data(),tt);
1304 if(b) t[i]=tt;
1305 else
1306 {
1307 omFreeBinAddr(t);
1308 Werror("arg %d is not a type name",i);
1309 return TRUE;
1310 }
1311 }
1312 if (h->Typ()!=PROC_CMD)
1313 {
1314 omFreeBinAddr(t);
1315 Werror("last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1316 i,h->name,Tok2Cmdname(h->Typ()),h->Typ(),myynest);
1317 return TRUE;
1318 }
1320 omFreeBinAddr(t);
1321 if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1322 {
1323 // get the proc:
1324 iiCurrProc=(idhdl)h->data;
1325 idhdl currProc=iiCurrProc; /*iiCurrProc may be changed after yyparse*/
1326 procinfo * pi=IDPROC(currProc);
1327 // already loaded ?
1328 if( pi->data.s.body==NULL )
1329 {
1331 if (pi->data.s.body==NULL) return TRUE;
1332 }
1333 // set currPackHdl/currPack
1334 if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1335 {
1336 currPack=pi->pack;
1339 //Print("set pack=%s\n",IDID(currPackHdl));
1340 }
1341 // see iiAllStart:
1342 BITSET save1=si_opt_1;
1343 BITSET save2=si_opt_2;
1344 newBuffer( omStrDup(pi->data.s.body), BT_proc,
1345 pi, pi->data.s.body_lineno-(iiCurrArgs==NULL) );
1346 BOOLEAN err=yyparse();
1348 si_opt_1=save1;
1349 si_opt_2=save2;
1350 // now save the return-expr.
1352 memcpy(&sLastPrinted,&iiRETURNEXPR,sizeof(sleftv));
1354 // warning about args.:
1355 if (iiCurrArgs!=NULL)
1356 {
1357 if (err==0) Warn("too many arguments for %s",IDID(currProc));
1361 }
1362 // similate proc_end:
1363 // - leave input
1364 void myychangebuffer();
1366 // - set the current buffer to its end (this is a pointer in a buffer,
1367 // not a file ptr) "branchTo" is only valid in proc)
1369 // - kill local vars
1371 // - return
1372 newBuffer(omStrDup("\n;return(_);\n"),BT_execute);
1373 return (err!=0);
1374 }
1375 return FALSE;
1376}
1378{
1379 if (iiCurrArgs==NULL)
1380 {
1381 if (strcmp(p->name,"#")==0)
1382 return iiDefaultParameter(p);
1383 Werror("not enough arguments for proc %s",VoiceName());
1384 p->CleanUp();
1385 return TRUE;
1386 }
1388 leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1389 BOOLEAN is_default_list=FALSE;
1390 if (strcmp(p->name,"#")==0)
1391 {
1392 is_default_list=TRUE;
1393 rest=NULL;
1394 }
1395 else
1396 {
1397 h->next=NULL;
1398 }
1400 if (is_default_list)
1401 {
1403 }
1404 else
1405 {
1406 iiCurrArgs=rest;
1407 }
1408 h->CleanUp();
1410 return res;
1411}
1412
1413static BOOLEAN iiInternalExport (leftv v, int toLev)
1414{
1415 idhdl h=(idhdl)v->data;
1416 //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1417 if (IDLEV(h)==0)
1418 {
1419 if ((myynest>0) && (BVERBOSE(V_REDEFINE))) Warn("`%s` is already global",IDID(h));
1420 }
1421 else
1422 {
1423 h=IDROOT->get(v->name,toLev);
1424 idhdl *root=&IDROOT;
1425 if ((h==NULL)&&(currRing!=NULL))
1426 {
1427 h=currRing->idroot->get(v->name,toLev);
1428 root=&currRing->idroot;
1429 }
1430 BOOLEAN keepring=FALSE;
1431 if ((h!=NULL)&&(IDLEV(h)==toLev))
1432 {
1433 if (IDTYP(h)==v->Typ())
1434 {
1435 if ((IDTYP(h)==RING_CMD)
1436 && (v->Data()==IDDATA(h)))
1437 {
1439 keepring=TRUE;
1440 IDLEV(h)=toLev;
1441 //WarnS("keepring");
1442 return FALSE;
1443 }
1444 if (BVERBOSE(V_REDEFINE))
1445 {
1446 Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1447 }
1448 if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1449 killhdl2(h,root,currRing);
1450 }
1451 else
1452 {
1453 WerrorS("object with a different type exists");
1454 return TRUE;
1455 }
1456 }
1457 h=(idhdl)v->data;
1458 IDLEV(h)=toLev;
1459 if (keepring) rDecRefCnt(IDRING(h));
1461 //Print("export %s\n",IDID(h));
1462 }
1463 return FALSE;
1464}
1465
1467{
1468 idhdl h=(idhdl)v->data;
1469 if(h==NULL)
1470 {
1471 Warn("'%s': no such identifier\n", v->name);
1472 return FALSE;
1473 }
1474 package frompack=v->req_packhdl;
1475 if (frompack==NULL) frompack=currPack;
1476 if ((RingDependend(IDTYP(h)))
1477 || ((IDTYP(h)==LIST_CMD)
1478 && (lRingDependend(IDLIST(h)))
1479 )
1480 )
1481 {
1482 //Print("// ==> Ringdependent set nesting to 0\n");
1483 return (iiInternalExport(v, toLev));
1484 }
1485 else
1486 {
1487 IDLEV(h)=toLev;
1488 v->req_packhdl=rootpack;
1489 if (h==frompack->idroot)
1490 {
1491 frompack->idroot=h->next;
1492 }
1493 else
1494 {
1495 idhdl hh=frompack->idroot;
1496 while ((hh!=NULL) && (hh->next!=h))
1497 hh=hh->next;
1498 if ((hh!=NULL) && (hh->next==h))
1499 hh->next=h->next;
1500 else
1501 {
1502 Werror("`%s` not found",v->Name());
1503 return TRUE;
1504 }
1505 }
1506 h->next=rootpack->idroot;
1507 rootpack->idroot=h;
1508 }
1509 return FALSE;
1510}
1511
1513{
1514 BOOLEAN nok=FALSE;
1515 leftv r=v;
1516 while (v!=NULL)
1517 {
1518 if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1519 {
1520 Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1521 nok=TRUE;
1522 }
1523 else
1524 {
1525 if(iiInternalExport(v, toLev))
1526 nok=TRUE;
1527 }
1528 v=v->next;
1529 }
1530 r->CleanUp();
1531 return nok;
1532}
1533
1534/*assume root!=idroot*/
1535BOOLEAN iiExport (leftv v, int toLev, package pack)
1536{
1537// if ((pack==basePack)&&(pack!=currPack))
1538// { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1539 BOOLEAN nok=FALSE;
1540 leftv rv=v;
1541 while (v!=NULL)
1542 {
1543 if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1544 )
1545 {
1546 Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1547 nok=TRUE;
1548 }
1549 else
1550 {
1551 idhdl old=pack->idroot->get( v->name,toLev);
1552 if (old!=NULL)
1553 {
1554 if ((pack==currPack) && (old==(idhdl)v->data))
1555 {
1556 if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1557 break;
1558 }
1559 else if (IDTYP(old)==v->Typ())
1560 {
1561 if (BVERBOSE(V_REDEFINE))
1562 {
1563 Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1564 }
1565 v->name=omStrDup(v->name);
1566 killhdl2(old,&(pack->idroot),currRing);
1567 }
1568 else
1569 {
1570 rv->CleanUp();
1571 return TRUE;
1572 }
1573 }
1574 //Print("iiExport: pack=%s\n",IDID(root));
1575 if(iiInternalExport(v, toLev, pack))
1576 {
1577 rv->CleanUp();
1578 return TRUE;
1579 }
1580 }
1581 v=v->next;
1582 }
1583 rv->CleanUp();
1584 return nok;
1585}
1586
1588{
1589 if (currRing==NULL)
1590 {
1591 #ifdef SIQ
1592 if (siq<=0)
1593 {
1594 #endif
1595 if (RingDependend(i))
1596 {
1597 WerrorS("no ring active (9)");
1598 return TRUE;
1599 }
1600 #ifdef SIQ
1601 }
1602 #endif
1603 }
1604 return FALSE;
1605}
1606
1607poly iiHighCorner(ideal I, int ak)
1608{
1609 int i;
1610 if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1611 poly po=NULL;
1613 {
1614 scComputeHC(I,currRing->qideal,ak,po);
1615 if (po!=NULL)
1616 {
1617 pGetCoeff(po)=nInit(1);
1618 for (i=rVar(currRing); i>0; i--)
1619 {
1620 if (pGetExp(po, i) > 0) pDecrExp(po,i);
1621 }
1622 pSetComp(po,ak);
1623 pSetm(po);
1624 }
1625 }
1626 else
1627 po=pOne();
1628 return po;
1629}
1630
1632{
1633 if (p!=basePack)
1634 {
1635 idhdl t=basePack->idroot;
1636 while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1637 if (t==NULL)
1638 {
1639 WarnS("package not found\n");
1640 p=basePack;
1641 }
1642 }
1643}
1644
1645idhdl rDefault(const char *s)
1646{
1647 idhdl tmp=NULL;
1648
1649 if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1650 if (tmp==NULL) return NULL;
1651
1652// if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1654 {
1656 }
1657
1658 ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1659
1660 #ifndef TEST_ZN_AS_ZP
1661 r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1662 #else
1663 mpz_t modBase;
1664 mpz_init_set_ui(modBase, (long)32003);
1665 ZnmInfo info;
1666 info.base= modBase;
1667 info.exp= 1;
1668 r->cf=nInitChar(n_Zn,(void*) &info);
1669 r->cf->is_field=1;
1670 r->cf->is_domain=1;
1671 r->cf->has_simple_Inverse=1;
1672 #endif
1673 r->N = 3;
1674 /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1675 /*names*/
1676 r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1677 r->names[0] = omStrDup("x");
1678 r->names[1] = omStrDup("y");
1679 r->names[2] = omStrDup("z");
1680 /*weights: entries for 3 blocks: NULL*/
1681 r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1682 /*order: dp,C,0*/
1683 r->order = (rRingOrder_t *) omAlloc(3 * sizeof(rRingOrder_t *));
1684 r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1685 r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1686 /* ringorder dp for the first block: var 1..3 */
1687 r->order[0] = ringorder_dp;
1688 r->block0[0] = 1;
1689 r->block1[0] = 3;
1690 /* ringorder C for the second block: no vars */
1691 r->order[1] = ringorder_C;
1692 /* the last block: everything is 0 */
1693 r->order[2] = (rRingOrder_t)0;
1694
1695 /* complete ring intializations */
1696 rComplete(r);
1697 rSetHdl(tmp);
1698 return currRingHdl;
1699}
1700
1701static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n);
1703{
1704 if ((r==NULL)||(r->VarOffset==NULL))
1705 return NULL;
1707 if (h!=NULL) return h;
1708 if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1709 if (h!=NULL) return h;
1711 while(p!=NULL)
1712 {
1713 if ((p->cPack!=basePack)
1714 && (p->cPack!=currPack))
1715 h=rSimpleFindHdl(r,p->cPack->idroot,n);
1716 if (h!=NULL) return h;
1717 p=p->next;
1718 }
1719 idhdl tmp=basePack->idroot;
1720 while (tmp!=NULL)
1721 {
1722 if (IDTYP(tmp)==PACKAGE_CMD)
1723 h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1724 if (h!=NULL) return h;
1725 tmp=IDNEXT(tmp);
1726 }
1727 return NULL;
1728}
1729
1730void rDecomposeCF(leftv h,const ring r,const ring R)
1731{
1733 L->Init(4);
1734 h->rtyp=LIST_CMD;
1735 h->data=(void *)L;
1736 // 0: char/ cf - ring
1737 // 1: list (var)
1738 // 2: list (ord)
1739 // 3: qideal
1740 // ----------------------------------------
1741 // 0: char/ cf - ring
1742 L->m[0].rtyp=INT_CMD;
1743 L->m[0].data=(void *)(long)r->cf->ch;
1744 // ----------------------------------------
1745 // 1: list (var)
1747 LL->Init(r->N);
1748 int i;
1749 for(i=0; i<r->N; i++)
1750 {
1751 LL->m[i].rtyp=STRING_CMD;
1752 LL->m[i].data=(void *)omStrDup(r->names[i]);
1753 }
1754 L->m[1].rtyp=LIST_CMD;
1755 L->m[1].data=(void *)LL;
1756 // ----------------------------------------
1757 // 2: list (ord)
1759 i=rBlocks(r)-1;
1760 LL->Init(i);
1761 i--;
1762 lists LLL;
1763 for(; i>=0; i--)
1764 {
1765 intvec *iv;
1766 int j;
1767 LL->m[i].rtyp=LIST_CMD;
1769 LLL->Init(2);
1770 LLL->m[0].rtyp=STRING_CMD;
1771 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1772 if (r->block1[i]-r->block0[i] >=0 )
1773 {
1774 j=r->block1[i]-r->block0[i];
1775 if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1776 iv=new intvec(j+1);
1777 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1778 {
1779 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1780 }
1781 else switch (r->order[i])
1782 {
1783 case ringorder_dp:
1784 case ringorder_Dp:
1785 case ringorder_ds:
1786 case ringorder_Ds:
1787 case ringorder_lp:
1788 case ringorder_rp:
1789 case ringorder_ls:
1790 for(;j>=0; j--) (*iv)[j]=1;
1791 break;
1792 default: /* do nothing */;
1793 }
1794 }
1795 else
1796 {
1797 iv=new intvec(1);
1798 }
1799 LLL->m[1].rtyp=INTVEC_CMD;
1800 LLL->m[1].data=(void *)iv;
1801 LL->m[i].data=(void *)LLL;
1802 }
1803 L->m[2].rtyp=LIST_CMD;
1804 L->m[2].data=(void *)LL;
1805 // ----------------------------------------
1806 // 3: qideal
1807 L->m[3].rtyp=IDEAL_CMD;
1808 if (nCoeff_is_transExt(R->cf))
1809 L->m[3].data=(void *)idInit(1,1);
1810 else
1811 {
1812 ideal q=idInit(IDELEMS(r->qideal));
1813 q->m[0]=p_Init(R);
1814 pSetCoeff0(q->m[0],n_Copy((number)(r->qideal->m[0]),R->cf));
1815 L->m[3].data=(void *)q;
1816// I->m[0] = pNSet(R->minpoly);
1817 }
1818 // ----------------------------------------
1819}
1820static void rDecomposeC_41(leftv h,const coeffs C)
1821/* field is R or C */
1822{
1824 if (nCoeff_is_long_C(C)) L->Init(3);
1825 else L->Init(2);
1826 h->rtyp=LIST_CMD;
1827 h->data=(void *)L;
1828 // 0: char/ cf - ring
1829 // 1: list (var)
1830 // 2: list (ord)
1831 // ----------------------------------------
1832 // 0: char/ cf - ring
1833 L->m[0].rtyp=INT_CMD;
1834 L->m[0].data=(void *)0;
1835 // ----------------------------------------
1836 // 1:
1838 LL->Init(2);
1839 LL->m[0].rtyp=INT_CMD;
1840 LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1841 LL->m[1].rtyp=INT_CMD;
1842 LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1843 L->m[1].rtyp=LIST_CMD;
1844 L->m[1].data=(void *)LL;
1845 // ----------------------------------------
1846 // 2: list (par)
1847 if (nCoeff_is_long_C(C))
1848 {
1849 L->m[2].rtyp=STRING_CMD;
1850 L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1851 }
1852 // ----------------------------------------
1853}
1854static void rDecomposeC(leftv h,const ring R)
1855/* field is R or C */
1856{
1858 if (rField_is_long_C(R)) L->Init(3);
1859 else L->Init(2);
1860 h->rtyp=LIST_CMD;
1861 h->data=(void *)L;
1862 // 0: char/ cf - ring
1863 // 1: list (var)
1864 // 2: list (ord)
1865 // ----------------------------------------
1866 // 0: char/ cf - ring
1867 L->m[0].rtyp=INT_CMD;
1868 L->m[0].data=(void *)0;
1869 // ----------------------------------------
1870 // 1:
1872 LL->Init(2);
1873 LL->m[0].rtyp=INT_CMD;
1874 LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1875 LL->m[1].rtyp=INT_CMD;
1876 LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1877 L->m[1].rtyp=LIST_CMD;
1878 L->m[1].data=(void *)LL;
1879 // ----------------------------------------
1880 // 2: list (par)
1881 if (rField_is_long_C(R))
1882 {
1883 L->m[2].rtyp=STRING_CMD;
1884 L->m[2].data=(void *)omStrDup(*rParameter(R));
1885 }
1886 // ----------------------------------------
1887}
1888
1889#ifdef HAVE_RINGS
1890static void rDecomposeRing_41(leftv h,const coeffs C)
1891/* field is R or C */
1892{
1894 if (nCoeff_is_Ring(C)) L->Init(1);
1895 else L->Init(2);
1896 h->rtyp=LIST_CMD;
1897 h->data=(void *)L;
1898 // 0: char/ cf - ring
1899 // 1: list (module)
1900 // ----------------------------------------
1901 // 0: char/ cf - ring
1902 L->m[0].rtyp=STRING_CMD;
1903 L->m[0].data=(void *)omStrDup("integer");
1904 // ----------------------------------------
1905 // 1: modulo
1906 if (nCoeff_is_Z(C)) return;
1908 LL->Init(2);
1909 LL->m[0].rtyp=BIGINT_CMD;
1910 LL->m[0].data=n_InitMPZ( C->modBase, coeffs_BIGINT);
1911 LL->m[1].rtyp=INT_CMD;
1912 LL->m[1].data=(void *) C->modExponent;
1913 L->m[1].rtyp=LIST_CMD;
1914 L->m[1].data=(void *)LL;
1915}
1916#endif
1917
1918void rDecomposeRing(leftv h,const ring R)
1919/* field is R or C */
1920{
1921#ifdef HAVE_RINGS
1923 if (rField_is_Z(R)) L->Init(1);
1924 else L->Init(2);
1925 h->rtyp=LIST_CMD;
1926 h->data=(void *)L;
1927 // 0: char/ cf - ring
1928 // 1: list (module)
1929 // ----------------------------------------
1930 // 0: char/ cf - ring
1931 L->m[0].rtyp=STRING_CMD;
1932 L->m[0].data=(void *)omStrDup("integer");
1933 // ----------------------------------------
1934 // 1: module
1935 if (rField_is_Z(R)) return;
1937 LL->Init(2);
1938 LL->m[0].rtyp=BIGINT_CMD;
1939 LL->m[0].data=n_InitMPZ( R->cf->modBase, coeffs_BIGINT);
1940 LL->m[1].rtyp=INT_CMD;
1941 LL->m[1].data=(void *) R->cf->modExponent;
1942 L->m[1].rtyp=LIST_CMD;
1943 L->m[1].data=(void *)LL;
1944#else
1945 WerrorS("rDecomposeRing");
1946#endif
1947}
1948
1949
1951{
1952 assume( C != NULL );
1953
1954 // sanity check: require currRing==r for rings with polynomial data
1955 if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1956 {
1957 WerrorS("ring with polynomial data must be the base ring or compatible");
1958 return TRUE;
1959 }
1960 if (nCoeff_is_numeric(C))
1961 {
1963 }
1964#ifdef HAVE_RINGS
1965 else if (nCoeff_is_Ring(C))
1966 {
1968 }
1969#endif
1970 else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1971 {
1972 rDecomposeCF(res, C->extRing, currRing);
1973 }
1974 else if(nCoeff_is_GF(C))
1975 {
1977 Lc->Init(4);
1978 // char:
1979 Lc->m[0].rtyp=INT_CMD;
1980 Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1981 // var:
1983 Lv->Init(1);
1984 Lv->m[0].rtyp=STRING_CMD;
1985 Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1986 Lc->m[1].rtyp=LIST_CMD;
1987 Lc->m[1].data=(void*)Lv;
1988 // ord:
1990 Lo->Init(1);
1992 Loo->Init(2);
1993 Loo->m[0].rtyp=STRING_CMD;
1994 Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
1995
1996 intvec *iv=new intvec(1); (*iv)[0]=1;
1997 Loo->m[1].rtyp=INTVEC_CMD;
1998 Loo->m[1].data=(void *)iv;
1999
2000 Lo->m[0].rtyp=LIST_CMD;
2001 Lo->m[0].data=(void*)Loo;
2002
2003 Lc->m[2].rtyp=LIST_CMD;
2004 Lc->m[2].data=(void*)Lo;
2005 // q-ideal:
2006 Lc->m[3].rtyp=IDEAL_CMD;
2007 Lc->m[3].data=(void *)idInit(1,1);
2008 // ----------------------
2009 res->rtyp=LIST_CMD;
2010 res->data=(void*)Lc;
2011 }
2012 else
2013 {
2014 res->rtyp=INT_CMD;
2015 res->data=(void *)(long)C->ch;
2016 }
2017 // ----------------------------------------
2018 return FALSE;
2019}
2020
2021// common part of rDecompse and rDecompose_list_cf:
2022static void rDecompose_23456(const ring r, lists L)
2023{
2024 // ----------------------------------------
2025 // 1: list (var)
2027 LL->Init(r->N);
2028 int i;
2029 for(i=0; i<r->N; i++)
2030 {
2031 LL->m[i].rtyp=STRING_CMD;
2032 LL->m[i].data=(void *)omStrDup(r->names[i]);
2033 }
2034 L->m[1].rtyp=LIST_CMD;
2035 L->m[1].data=(void *)LL;
2036 // ----------------------------------------
2037 // 2: list (ord)
2039 i=rBlocks(r)-1;
2040 LL->Init(i);
2041 i--;
2042 lists LLL;
2043 for(; i>=0; i--)
2044 {
2045 intvec *iv;
2046 int j;
2047 LL->m[i].rtyp=LIST_CMD;
2049 LLL->Init(2);
2050 LLL->m[0].rtyp=STRING_CMD;
2051 LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2052
2053 if((r->order[i] == ringorder_IS)
2054 || (r->order[i] == ringorder_s)) //|| r->order[i] == ringorder_S)
2055 {
2056 assume( r->block0[i] == r->block1[i] );
2057 const int s = r->block0[i];
2058 assume( (-2 < s && s < 2)||(r->order[i] != ringorder_IS));
2059
2060 iv=new intvec(1);
2061 (*iv)[0] = s;
2062 }
2063 else if (r->block1[i]-r->block0[i] >=0 )
2064 {
2065 int bl=j=r->block1[i]-r->block0[i];
2066 if (r->order[i]==ringorder_M)
2067 {
2068 j=(j+1)*(j+1)-1;
2069 bl=j+1;
2070 }
2071 else if (r->order[i]==ringorder_am)
2072 {
2073 j+=r->wvhdl[i][bl+1];
2074 }
2075 iv=new intvec(j+1);
2076 if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2077 {
2078 for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2079 }
2080 else switch (r->order[i])
2081 {
2082 case ringorder_dp:
2083 case ringorder_Dp:
2084 case ringorder_ds:
2085 case ringorder_Ds:
2086 case ringorder_lp:
2087 case ringorder_ls:
2088 case ringorder_rp:
2089 for(;j>=0; j--) (*iv)[j]=1;
2090 break;
2091 default: /* do nothing */;
2092 }
2093 }
2094 else
2095 {
2096 iv=new intvec(1);
2097 }
2098 LLL->m[1].rtyp=INTVEC_CMD;
2099 LLL->m[1].data=(void *)iv;
2100 LL->m[i].data=(void *)LLL;
2101 }
2102 L->m[2].rtyp=LIST_CMD;
2103 L->m[2].data=(void *)LL;
2104 // ----------------------------------------
2105 // 3: qideal
2106 L->m[3].rtyp=IDEAL_CMD;
2107 if (r->qideal==NULL)
2108 L->m[3].data=(void *)idInit(1,1);
2109 else
2110 L->m[3].data=(void *)idCopy(r->qideal);
2111 // ----------------------------------------
2112#ifdef HAVE_PLURAL // NC! in rDecompose
2113 if (rIsPluralRing(r))
2114 {
2115 L->m[4].rtyp=MATRIX_CMD;
2116 L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2117 L->m[5].rtyp=MATRIX_CMD;
2118 L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2119 }
2120#endif
2121}
2122
2124{
2125 assume( r != NULL );
2126 const coeffs C = r->cf;
2127 assume( C != NULL );
2128
2129 // sanity check: require currRing==r for rings with polynomial data
2130 if ( (r!=currRing) && (
2131 (r->qideal != NULL)
2132#ifdef HAVE_PLURAL
2133 || (rIsPluralRing(r))
2134#endif
2135 )
2136 )
2137 {
2138 WerrorS("ring with polynomial data must be the base ring or compatible");
2139 return NULL;
2140 }
2141 // 0: char/ cf - ring
2142 // 1: list (var)
2143 // 2: list (ord)
2144 // 3: qideal
2145 // possibly:
2146 // 4: C
2147 // 5: D
2149 if (rIsPluralRing(r))
2150 L->Init(6);
2151 else
2152 L->Init(4);
2153 // ----------------------------------------
2154 // 0: char/ cf - ring
2155 L->m[0].rtyp=CRING_CMD;
2156 L->m[0].data=(char*)r->cf; r->cf->ref++;
2157 // ----------------------------------------
2158 rDecompose_23456(r,L);
2159 return L;
2160}
2161
2162lists rDecompose(const ring r)
2163{
2164 assume( r != NULL );
2165 const coeffs C = r->cf;
2166 assume( C != NULL );
2167
2168 // sanity check: require currRing==r for rings with polynomial data
2169 if ( (r!=currRing) && (
2170 (nCoeff_is_algExt(C) && (C != currRing->cf))
2171 || (r->qideal != NULL)
2172#ifdef HAVE_PLURAL
2173 || (rIsPluralRing(r))
2174#endif
2175 )
2176 )
2177 {
2178 WerrorS("ring with polynomial data must be the base ring or compatible");
2179 return NULL;
2180 }
2181 // 0: char/ cf - ring
2182 // 1: list (var)
2183 // 2: list (ord)
2184 // 3: qideal
2185 // possibly:
2186 // 4: C
2187 // 5: D
2189 if (rIsPluralRing(r))
2190 L->Init(6);
2191 else
2192 L->Init(4);
2193 // ----------------------------------------
2194 // 0: char/ cf - ring
2195 if (rField_is_numeric(r))
2196 {
2197 rDecomposeC(&(L->m[0]),r);
2198 }
2199 else if (rField_is_Ring(r))
2200 {
2201 rDecomposeRing(&(L->m[0]),r);
2202 }
2203 else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2204 {
2205 rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2206 }
2207 else if(rField_is_GF(r))
2208 {
2210 Lc->Init(4);
2211 // char:
2212 Lc->m[0].rtyp=INT_CMD;
2213 Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2214 // var:
2216 Lv->Init(1);
2217 Lv->m[0].rtyp=STRING_CMD;
2218 Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2219 Lc->m[1].rtyp=LIST_CMD;
2220 Lc->m[1].data=(void*)Lv;
2221 // ord:
2223 Lo->Init(1);
2225 Loo->Init(2);
2226 Loo->m[0].rtyp=STRING_CMD;
2227 Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2228
2229 intvec *iv=new intvec(1); (*iv)[0]=1;
2230 Loo->m[1].rtyp=INTVEC_CMD;
2231 Loo->m[1].data=(void *)iv;
2232
2233 Lo->m[0].rtyp=LIST_CMD;
2234 Lo->m[0].data=(void*)Loo;
2235
2236 Lc->m[2].rtyp=LIST_CMD;
2237 Lc->m[2].data=(void*)Lo;
2238 // q-ideal:
2239 Lc->m[3].rtyp=IDEAL_CMD;
2240 Lc->m[3].data=(void *)idInit(1,1);
2241 // ----------------------
2242 L->m[0].rtyp=LIST_CMD;
2243 L->m[0].data=(void*)Lc;
2244 }
2245 else if (rField_is_Zp(r) || rField_is_Q(r))
2246 {
2247 L->m[0].rtyp=INT_CMD;
2248 L->m[0].data=(void *)(long)r->cf->ch;
2249 }
2250 else
2251 {
2252 L->m[0].rtyp=CRING_CMD;
2253 L->m[0].data=(void *)r->cf;
2254 r->cf->ref++;
2255 }
2256 // ----------------------------------------
2257 rDecompose_23456(r,L);
2258 return L;
2259}
2260
2261void rComposeC(lists L, ring R)
2262/* field is R or C */
2263{
2264 // ----------------------------------------
2265 // 0: char/ cf - ring
2266 if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2267 {
2268 WerrorS("invalid coeff. field description, expecting 0");
2269 return;
2270 }
2271// R->cf->ch=0;
2272 // ----------------------------------------
2273 // 0, (r1,r2) [, "i" ]
2274 if (L->m[1].rtyp!=LIST_CMD)
2275 {
2276 WerrorS("invalid coeff. field description, expecting precision list");
2277 return;
2278 }
2279 lists LL=(lists)L->m[1].data;
2280 if ((LL->nr!=1)
2281 || (LL->m[0].rtyp!=INT_CMD)
2282 || (LL->m[1].rtyp!=INT_CMD))
2283 {
2284 WerrorS("invalid coeff. field description list, expected list(`int`,`int`)");
2285 return;
2286 }
2287 int r1=(int)(long)LL->m[0].data;
2288 int r2=(int)(long)LL->m[1].data;
2289 r1=si_min(r1,32767);
2290 r2=si_min(r2,32767);
2291 LongComplexInfo par; memset(&par, 0, sizeof(par));
2292 par.float_len=r1;
2293 par.float_len2=r2;
2294 if (L->nr==2) // complex
2295 {
2296 if (L->m[2].rtyp!=STRING_CMD)
2297 {
2298 WerrorS("invalid coeff. field description, expecting parameter name");
2299 return;
2300 }
2301 par.par_name=(char*)L->m[2].data;
2302 R->cf = nInitChar(n_long_C, &par);
2303 }
2304 else if ((r1<=SHORT_REAL_LENGTH) && (r2<=SHORT_REAL_LENGTH)) /* && L->nr==1*/
2305 R->cf = nInitChar(n_R, NULL);
2306 else /* && L->nr==1*/
2307 {
2308 R->cf = nInitChar(n_long_R, &par);
2309 }
2310}
2311
2312#ifdef HAVE_RINGS
2313void rComposeRing(lists L, ring R)
2314/* field is R or C */
2315{
2316 // ----------------------------------------
2317 // 0: string: integer
2318 // no further entries --> Z
2319 mpz_t modBase;
2320 unsigned int modExponent = 1;
2321
2322 if (L->nr == 0)
2323 {
2324 mpz_init_set_ui(modBase,0);
2325 modExponent = 1;
2326 }
2327 // ----------------------------------------
2328 // 1:
2329 else
2330 {
2331 if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2332 lists LL=(lists)L->m[1].data;
2333 if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2334 {
2335 number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2336 // assume that tmp is integer, not rational
2337 mpz_init(modBase);
2338 n_MPZ (modBase, tmp, coeffs_BIGINT);
2339 }
2340 else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2341 {
2342 mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2343 }
2344 else
2345 {
2346 mpz_init_set_ui(modBase,0);
2347 }
2348 if (LL->nr >= 1)
2349 {
2350 modExponent = (unsigned long) LL->m[1].data;
2351 }
2352 else
2353 {
2354 modExponent = 1;
2355 }
2356 }
2357 // ----------------------------------------
2358 if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
2359 {
2360 WerrorS("Wrong ground ring specification (module is 1)");
2361 return;
2362 }
2363 if (modExponent < 1)
2364 {
2365 WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2366 return;
2367 }
2368 // module is 0 ---> integers
2369 if (mpz_sgn1(modBase) == 0)
2370 {
2371 R->cf=nInitChar(n_Z,NULL);
2372 }
2373 // we have an exponent
2374 else if (modExponent > 1)
2375 {
2376 //R->cf->ch = R->cf->modExponent;
2377 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2378 {
2379 /* this branch should be active for modExponent = 2..32 resp. 2..64,
2380 depending on the size of a long on the respective platform */
2381 R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2382 }
2383 else
2384 {
2385 //ringtype 3
2386 ZnmInfo info;
2387 info.base= modBase;
2388 info.exp= modExponent;
2389 R->cf=nInitChar(n_Znm,(void*) &info);
2390 }
2391 }
2392 // just a module m > 1
2393 else
2394 {
2395 //ringtype = 2;
2396 //const int ch = mpz_get_ui(modBase);
2397 ZnmInfo info;
2398 info.base= modBase;
2399 info.exp= modExponent;
2400 R->cf=nInitChar(n_Zn,(void*) &info);
2401 }
2402 mpz_clear(modBase);
2403}
2404#endif
2405
2406static void rRenameVars(ring R)
2407{
2408 int i,j;
2409 BOOLEAN ch;
2410 do
2411 {
2412 ch=0;
2413 for(i=0;i<R->N-1;i++)
2414 {
2415 for(j=i+1;j<R->N;j++)
2416 {
2417 if (strcmp(R->names[i],R->names[j])==0)
2418 {
2419 ch=TRUE;
2420 Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`in >>%s<<\nin %s:%d",i+1,j+1,R->names[i],R->names[i],my_yylinebuf,currentVoice->filename,yylineno);
2421 omFree(R->names[j]);
2422 size_t len=2+strlen(R->names[i]);
2423 R->names[j]=(char *)omAlloc(len);
2424 snprintf(R->names[j],len,"@%s",R->names[i]);
2425 }
2426 }
2427 }
2428 }
2429 while (ch);
2430 for(i=0;i<rPar(R); i++)
2431 {
2432 for(j=0;j<R->N;j++)
2433 {
2434 if (strcmp(rParameter(R)[i],R->names[j])==0)
2435 {
2436 Warn("name conflict par(%d) and var(%d): `%s`, rename the VARIABLE to `@@(%d)`in >>%s<<\nin %s:%d",i+1,j+1,R->names[j],i+1,my_yylinebuf,currentVoice->filename,yylineno);
2437// omFree(rParameter(R)[i]);
2438// rParameter(R)[i]=(char *)omAlloc(10);
2439// sprintf(rParameter(R)[i],"@@(%d)",i+1);
2440 omFree(R->names[j]);
2441 R->names[j]=(char *)omAlloc(10);
2442 snprintf(R->names[j],10,"@@(%d)",i+1);
2443 }
2444 }
2445 }
2446}
2447
2448static inline BOOLEAN rComposeVar(const lists L, ring R)
2449{
2450 assume(R!=NULL);
2451 if (L->m[1].Typ()==LIST_CMD)
2452 {
2453 lists v=(lists)L->m[1].Data();
2454 R->N = v->nr+1;
2455 if (R->N<=0)
2456 {
2457 WerrorS("no ring variables");
2458 return TRUE;
2459 }
2460 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2461 int i;
2462 for(i=0;i<R->N;i++)
2463 {
2464 if (v->m[i].Typ()==STRING_CMD)
2465 R->names[i]=omStrDup((char *)v->m[i].Data());
2466 else if (v->m[i].Typ()==POLY_CMD)
2467 {
2468 poly p=(poly)v->m[i].Data();
2469 int nr=pIsPurePower(p);
2470 if (nr>0)
2471 R->names[i]=omStrDup(currRing->names[nr-1]);
2472 else
2473 {
2474 Werror("var name %d must be a string or a ring variable",i+1);
2475 return TRUE;
2476 }
2477 }
2478 else
2479 {
2480 Werror("var name %d must be `string` (not %d)",i+1, v->m[i].Typ());
2481 return TRUE;
2482 }
2483 }
2484 }
2485 else
2486 {
2487 WerrorS("variable must be given as `list`");
2488 return TRUE;
2489 }
2490 return FALSE;
2491}
2492
2493static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2494{
2495 assume(R!=NULL);
2496 long bitmask=0L;
2497 if (L->m[2].Typ()==LIST_CMD)
2498 {
2499 lists v=(lists)L->m[2].Data();
2500 int n= v->nr+2;
2501 int j_in_R,j_in_L;
2502 // do we have an entry "L",... ?: set bitmask
2503 for (int j=0; j < n-1; j++)
2504 {
2505 if (v->m[j].Typ()==LIST_CMD)
2506 {
2507 lists vv=(lists)v->m[j].Data();
2508 if ((vv->nr==1)
2509 &&(vv->m[0].Typ()==STRING_CMD)
2510 &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2511 {
2512 number nn=(number)vv->m[1].Data();
2513 if (vv->m[1].Typ()==BIGINT_CMD)
2514 bitmask=n_Int(nn,coeffs_BIGINT);
2515 else if (vv->m[1].Typ()==INT_CMD)
2516 bitmask=(long)nn;
2517 else
2518 {
2519 Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2520 return TRUE;
2521 }
2522 break;
2523 }
2524 }
2525 }
2526 if (bitmask!=0) n--;
2527
2528 // initialize fields of R
2529 R->order=(rRingOrder_t *)omAlloc0((n+1)*sizeof(rRingOrder_t));
2530 R->block0=(int *)omAlloc0((n+1)*sizeof(int));
2531 R->block1=(int *)omAlloc0((n+1)*sizeof(int));
2532 R->wvhdl=(int**)omAlloc0((n+1)*sizeof(int_ptr));
2533 // init order, so that rBlocks works correctly
2534 for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2535 R->order[j_in_R] = ringorder_unspec;
2536 // orderings
2537 for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2538 {
2539 // todo: a(..), M
2540 if (v->m[j_in_L].Typ()!=LIST_CMD)
2541 {
2542 WerrorS("ordering must be list of lists");
2543 return TRUE;
2544 }
2545 lists vv=(lists)v->m[j_in_L].Data();
2546 if ((vv->nr==1)
2547 && (vv->m[0].Typ()==STRING_CMD))
2548 {
2549 if (strcmp((char*)vv->m[0].Data(),"L")==0)
2550 {
2551 j_in_R--;
2552 continue;
2553 }
2554 if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD)
2555 && (vv->m[1].Typ()!=INTMAT_CMD))
2556 {
2557 PrintS(lString(vv));
2558 Werror("ordering name must be a (string,intvec), not (string,%s)",Tok2Cmdname(vv->m[1].Typ()));
2559 return TRUE;
2560 }
2561 R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2562
2563 if (j_in_R==0) R->block0[0]=1;
2564 else
2565 {
2566 int jj=j_in_R-1;
2567 while((jj>=0)
2568 && ((R->order[jj]== ringorder_a)
2569 || (R->order[jj]== ringorder_aa)
2570 || (R->order[jj]== ringorder_am)
2571 || (R->order[jj]== ringorder_c)
2572 || (R->order[jj]== ringorder_C)
2573 || (R->order[jj]== ringorder_s)
2574 || (R->order[jj]== ringorder_S)
2575 ))
2576 {
2577 //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2578 jj--;
2579 }
2580 if (jj<0) R->block0[j_in_R]=1;
2581 else R->block0[j_in_R]=R->block1[jj]+1;
2582 }
2583 intvec *iv;
2584 if (vv->m[1].Typ()==INT_CMD)
2585 {
2586 int l=si_max(1,(int)(long)vv->m[1].Data());
2587 iv=new intvec(l);
2588 for(int i=0;i<l;i++) (*iv)[i]=1;
2589 }
2590 else
2591 iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC/INTMAT
2592 int iv_len=iv->length();
2593 if (iv_len==0)
2594 {
2595 Werror("empty intvec for ordering %d (%s)",j_in_R+1,rSimpleOrdStr(R->order[j_in_R]));
2596 return TRUE;
2597 }
2598 if (R->order[j_in_R]==ringorder_M)
2599 {
2600 if (vv->m[1].rtyp==INTMAT_CMD) iv->makeVector();
2601 iv_len=iv->length();
2602 }
2603 if ((R->order[j_in_R]!=ringorder_s)
2604 &&(R->order[j_in_R]!=ringorder_c)
2605 &&(R->order[j_in_R]!=ringorder_C))
2606 {
2607 R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2608 if (R->block1[j_in_R]>R->N)
2609 {
2610 if (R->block0[j_in_R]>R->N)
2611 {
2612 Werror("not enough variables for ordering %d (%s)",j_in_R,rSimpleOrdStr(R->order[j_in_R]));
2613 return TRUE;
2614 }
2615 R->block1[j_in_R]=R->N;
2616 iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2617 }
2618 //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2619 }
2620 int i;
2621 switch (R->order[j_in_R])
2622 {
2623 case ringorder_ws:
2624 case ringorder_Ws:
2625 R->OrdSgn=-1; // and continue
2626 case ringorder_aa:
2627 case ringorder_a:
2628 case ringorder_wp:
2629 case ringorder_Wp:
2630 R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2631 for (i=0; i<iv_len;i++)
2632 {
2633 R->wvhdl[j_in_R][i]=(*iv)[i];
2634 }
2635 break;
2636 case ringorder_am:
2637 R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2638 for (i=0; i<iv_len;i++)
2639 {
2640 R->wvhdl[j_in_R][i]=(*iv)[i];
2641 }
2642 R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2643 //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2644 for (; i<iv->length(); i++)
2645 {
2646 R->wvhdl[j_in_R][i+1]=(*iv)[i];
2647 }
2648 break;
2649 case ringorder_M:
2650 R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2651 for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2652 R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length())));
2653 if (R->block1[j_in_R]>R->N)
2654 {
2655 R->block1[j_in_R]=R->N;
2656 }
2657 break;
2658 case ringorder_ls:
2659 case ringorder_ds:
2660 case ringorder_Ds:
2661 case ringorder_rs:
2662 R->OrdSgn=-1;
2663 case ringorder_lp:
2664 case ringorder_dp:
2665 case ringorder_Dp:
2666 case ringorder_rp:
2667 #if 0
2668 for (i=0; i<iv_len;i++)
2669 {
2670 if (((*iv)[i]!=1)&&(iv_len!=1))
2671 {
2672 iv->show(1);
2673 Warn("ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2674 (*iv)[i],j_in_R+1,rSimpleOrdStr(R->order[j_in_R]),i+1,my_yylinebuf);
2675 break;
2676 }
2677 }
2678 #endif // break absfact.tst
2679 break;
2680 case ringorder_S:
2681 break;
2682 case ringorder_c:
2683 case ringorder_C:
2684 R->block1[j_in_R]=R->block0[j_in_R]=0;
2685 break;
2686
2687 case ringorder_s:
2688 R->block1[j_in_R]=R->block0[j_in_R]=(*iv)[0];
2689 rSetSyzComp(R->block0[j_in_R],R);
2690 break;
2691
2692 case ringorder_IS:
2693 {
2694 R->block1[j_in_R] = R->block0[j_in_R] = 0;
2695 if( iv->length() > 0 )
2696 {
2697 const int s = (*iv)[0];
2698 assume( -2 < s && s < 2 );
2699 R->block1[j_in_R] = R->block0[j_in_R] = s;
2700 }
2701 break;
2702 }
2703 case 0:
2704 case ringorder_unspec:
2705 break;
2706 case ringorder_L: /* cannot happen */
2707 case ringorder_a64: /*not implemented */
2708 WerrorS("ring order not implemented");
2709 return TRUE;
2710 }
2711 delete iv;
2712 }
2713 else
2714 {
2715 PrintS(lString(vv));
2716 WerrorS("ordering name must be a (string,intvec)");
2717 return TRUE;
2718 }
2719 }
2720 // sanity check
2721 j_in_R=n-2;
2722 if ((R->order[j_in_R]==ringorder_c)
2723 || (R->order[j_in_R]==ringorder_C)
2724 || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2725 if (R->block1[j_in_R] != R->N)
2726 {
2727 if (((R->order[j_in_R]==ringorder_dp) ||
2728 (R->order[j_in_R]==ringorder_ds) ||
2729 (R->order[j_in_R]==ringorder_Dp) ||
2730 (R->order[j_in_R]==ringorder_Ds) ||
2731 (R->order[j_in_R]==ringorder_rp) ||
2732 (R->order[j_in_R]==ringorder_rs) ||
2733 (R->order[j_in_R]==ringorder_lp) ||
2734 (R->order[j_in_R]==ringorder_ls))
2735 &&
2736 R->block0[j_in_R] <= R->N)
2737 {
2738 R->block1[j_in_R] = R->N;
2739 }
2740 else
2741 {
2742 Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2743 return TRUE;
2744 }
2745 }
2746 if (R->block0[j_in_R]>R->N)
2747 {
2748 Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2749 for(int ii=0;ii<=j_in_R;ii++)
2750 Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2751 return TRUE;
2752 }
2753 if (check_comp)
2754 {
2755 BOOLEAN comp_order=FALSE;
2756 int jj;
2757 for(jj=0;jj<n;jj++)
2758 {
2759 if ((R->order[jj]==ringorder_c) ||
2760 (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2761 }
2762 if (!comp_order)
2763 {
2764 R->order=(rRingOrder_t*)omRealloc0Size(R->order,n*sizeof(rRingOrder_t),(n+1)*sizeof(rRingOrder_t));
2765 R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2766 R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2767 R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2768 R->order[n-1]=ringorder_C;
2769 R->block0[n-1]=0;
2770 R->block1[n-1]=0;
2771 R->wvhdl[n-1]=NULL;
2772 n++;
2773 }
2774 }
2775 }
2776 else
2777 {
2778 WerrorS("ordering must be given as `list`");
2779 return TRUE;
2780 }
2781 if (bitmask!=0) { R->bitmask=bitmask; R->wanted_maxExp=bitmask; }
2782 return FALSE;
2783}
2784
2785ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask,const int isLetterplace)
2786{
2787 if ((L->nr!=3)
2788#ifdef HAVE_PLURAL
2789 &&(L->nr!=5)
2790#endif
2791 )
2792 return NULL;
2793 int is_gf_char=0;
2794 // 0: char/ cf - ring
2795 // 1: list (var)
2796 // 2: list (ord)
2797 // 3: qideal
2798 // possibly:
2799 // 4: C
2800 // 5: D
2801
2802 ring R = (ring) omAlloc0Bin(sip_sring_bin);
2803
2804 // ------------------------------------------------------------------
2805 // 0: char:
2806 if (L->m[0].Typ()==CRING_CMD)
2807 {
2808 R->cf=(coeffs)L->m[0].Data();
2809 R->cf->ref++;
2810 }
2811 else if (L->m[0].Typ()==INT_CMD)
2812 {
2813 int ch = (int)(long)L->m[0].Data();
2814 assume( ch >= 0 );
2815
2816 if (ch == 0) // Q?
2817 R->cf = nInitChar(n_Q, NULL);
2818 else
2819 {
2820 int l = IsPrime(ch); // Zp?
2821 if( l != ch )
2822 {
2823 Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2824 ch = l;
2825 }
2826 #ifndef TEST_ZN_AS_ZP
2827 R->cf = nInitChar(n_Zp, (void*)(long)ch);
2828 #else
2829 mpz_t modBase;
2830 mpz_init_set_ui(modBase,(long) ch);
2831 ZnmInfo info;
2832 info.base= modBase;
2833 info.exp= 1;
2834 R->cf=nInitChar(n_Zn,(void*) &info); //exponent is missing
2835 R->cf->is_field=1;
2836 R->cf->is_domain=1;
2837 R->cf->has_simple_Inverse=1;
2838 #endif
2839 }
2840 }
2841 else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2842 {
2843 lists LL=(lists)L->m[0].Data();
2844
2845#ifdef HAVE_RINGS
2846 if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2847 {
2848 rComposeRing(LL, R); // Ring!?
2849 }
2850 else
2851#endif
2852 if (LL->nr < 3)
2853 rComposeC(LL,R); // R, long_R, long_C
2854 else
2855 {
2856 if (LL->m[0].Typ()==INT_CMD)
2857 {
2858 int ch = (int)(long)LL->m[0].Data();
2859 while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2860 if (fftable[is_gf_char]==0) is_gf_char=-1;
2861
2862 if(is_gf_char!= -1)
2863 {
2864 GFInfo param;
2865
2866 param.GFChar = ch;
2867 param.GFDegree = 1;
2868 param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2869
2870 // nfInitChar should be able to handle the case when ch is in fftables!
2871 R->cf = nInitChar(n_GF, (void*)&param);
2872 }
2873 }
2874
2875 if( R->cf == NULL )
2876 {
2877 ring extRing = rCompose((lists)L->m[0].Data(),FALSE,0x7fff);
2878
2879 if (extRing==NULL)
2880 {
2881 WerrorS("could not create the specified coefficient field");
2882 goto rCompose_err;
2883 }
2884
2885 if( extRing->qideal != NULL ) // Algebraic extension
2886 {
2887 AlgExtInfo extParam;
2888
2889 extParam.r = extRing;
2890
2891 R->cf = nInitChar(n_algExt, (void*)&extParam);
2892 }
2893 else // Transcendental extension
2894 {
2895 TransExtInfo extParam;
2896 extParam.r = extRing;
2897
2898 R->cf = nInitChar(n_transExt, &extParam);
2899 }
2900 }
2901 }
2902 }
2903 else
2904 {
2905 WerrorS("coefficient field must be described by `int` or `list`");
2906 goto rCompose_err;
2907 }
2908
2909 if( R->cf == NULL )
2910 {
2911 WerrorS("could not create coefficient field described by the input!");
2912 goto rCompose_err;
2913 }
2914
2915 // ------------------------- VARS ---------------------------
2916 if (rComposeVar(L,R)) goto rCompose_err;
2917 // ------------------------ ORDER ------------------------------
2918 if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
2919
2920 // ------------------------ ??????? --------------------
2921
2922 if (!isLetterplace) rRenameVars(R);
2923 #ifdef HAVE_SHIFTBBA
2924 else
2925 {
2926 R->isLPring=isLetterplace;
2927 R->ShortOut=FALSE;
2928 R->CanShortOut=FALSE;
2929 }
2930 #endif
2931 if ((bitmask!=0)&&(R->wanted_maxExp==0)) R->wanted_maxExp=bitmask;
2932 rComplete(R);
2933
2934 // ------------------------ Q-IDEAL ------------------------
2935
2936 if (L->m[3].Typ()==IDEAL_CMD)
2937 {
2938 ideal q=(ideal)L->m[3].Data();
2939 if (q->m[0]!=NULL)
2940 {
2941 if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
2942 {
2943 #if 0
2944 WerrorS("coefficient fields must be equal if q-ideal !=0");
2945 goto rCompose_err;
2946 #else
2947 ring orig_ring=currRing;
2949 int *perm=NULL;
2950 int *par_perm=NULL;
2951 int par_perm_size=0;
2952 nMapFunc nMap;
2953
2954 if ((nMap=nSetMap(orig_ring->cf))==NULL)
2955 {
2956 if (rEqual(orig_ring,currRing))
2957 {
2958 nMap=n_SetMap(currRing->cf, currRing->cf);
2959 }
2960 else
2961 // Allow imap/fetch to be make an exception only for:
2962 if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
2966 ||
2967 (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
2968 (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
2969 rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
2970 {
2971 par_perm_size=rPar(orig_ring);
2972
2973// if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
2974// naSetChar(rInternalChar(orig_ring),orig_ring);
2975// else ntSetChar(rInternalChar(orig_ring),orig_ring);
2976
2977 nSetChar(currRing->cf);
2978 }
2979 else
2980 {
2981 WerrorS("coefficient fields must be equal if q-ideal !=0");
2982 goto rCompose_err;
2983 }
2984 }
2985 perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
2986 if (par_perm_size!=0)
2987 par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
2988 int i;
2989 #if 0
2990 // use imap:
2991 maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
2992 currRing->names,currRing->N,currRing->parameter, currRing->P,
2993 perm,par_perm, currRing->ch);
2994 #else
2995 // use fetch
2996 if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
2997 {
2998 for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
2999 }
3000 else if (par_perm_size!=0)
3001 for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
3002 for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
3003 #endif
3004 ideal dest_id=idInit(IDELEMS(q),1);
3005 for(i=IDELEMS(q)-1; i>=0; i--)
3006 {
3007 dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
3008 par_perm,par_perm_size);
3009 // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
3010 pTest(dest_id->m[i]);
3011 }
3012 R->qideal=dest_id;
3013 if (perm!=NULL)
3014 omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
3015 if (par_perm!=NULL)
3016 omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
3017 rChangeCurrRing(orig_ring);
3018 #endif
3019 }
3020 else
3021 R->qideal=idrCopyR(q,currRing,R);
3022 }
3023 }
3024 else
3025 {
3026 WerrorS("q-ideal must be given as `ideal`");
3027 goto rCompose_err;
3028 }
3029
3030
3031 // ---------------------------------------------------------------
3032 #ifdef HAVE_PLURAL
3033 if (L->nr==5)
3034 {
3035 if (nc_CallPlural((matrix)L->m[4].Data(),
3036 (matrix)L->m[5].Data(),
3037 NULL,NULL,
3038 R,
3039 true, // !!!
3040 true, false,
3041 currRing, FALSE)) goto rCompose_err;
3042 // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
3043 }
3044 #endif
3045 return R;
3046
3047rCompose_err:
3048 if (R->N>0)
3049 {
3050 int i;
3051 if (R->names!=NULL)
3052 {
3053 i=R->N-1;
3054 while (i>=0) { omfree(R->names[i]); i--; }
3055 omFree(R->names);
3056 }
3057 }
3058 omfree(R->order);
3059 omfree(R->block0);
3060 omfree(R->block1);
3061 omfree(R->wvhdl);
3062 omFree(R);
3063 return NULL;
3064}
3065
3066// from matpol.cc
3067
3068/*2
3069* compute the jacobi matrix of an ideal
3070*/
3072{
3073 int i,j;
3074 matrix result;
3075 ideal id=(ideal)a->Data();
3076
3078 for (i=1; i<=IDELEMS(id); i++)
3079 {
3080 for (j=1; j<=rVar(currRing); j++)
3081 {
3082 MATELEM(result,i,j) = pDiff(id->m[i-1],j);
3083 }
3084 }
3085 res->data=(char *)result;
3086 return FALSE;
3087}
3088
3089/*2
3090* returns the Koszul-matrix of degree d of a vectorspace with dimension n
3091* uses the first n entrees of id, if id <> NULL
3092*/
3094{
3095 int n=(int)(long)b->Data();
3096 int d=(int)(long)c->Data();
3097 int k,l,sign,row,col;
3098 matrix result;
3099 ideal temp;
3100 BOOLEAN bo;
3101 poly p;
3102
3103 if ((d>n) || (d<1) || (n<1))
3104 {
3105 res->data=(char *)mpNew(1,1);
3106 return FALSE;
3107 }
3108 int *choise = (int*)omAlloc(d*sizeof(int));
3109 if (id==NULL)
3110 temp=idMaxIdeal(1);
3111 else
3112 temp=(ideal)id->Data();
3113
3114 k = binom(n,d);
3115 l = k*d;
3116 l /= n-d+1;
3117 result =mpNew(l,k);
3118 col = 1;
3119 idInitChoise(d,1,n,&bo,choise);
3120 while (!bo)
3121 {
3122 sign = 1;
3123 for (l=1;l<=d;l++)
3124 {
3125 if (choise[l-1]<=IDELEMS(temp))
3126 {
3127 p = pCopy(temp->m[choise[l-1]-1]);
3128 if (sign == -1) p = pNeg(p);
3129 sign *= -1;
3130 row = idGetNumberOfChoise(l-1,d,1,n,choise);
3131 MATELEM(result,row,col) = p;
3132 }
3133 }
3134 col++;
3135 idGetNextChoise(d,n,&bo,choise);
3136 }
3137 omFreeSize(choise,d*sizeof(int));
3138 if (id==NULL) idDelete(&temp);
3139
3140 res->data=(char *)result;
3141 return FALSE;
3142}
3143
3144// from syz1.cc
3145/*2
3146* read out the Betti numbers from resolution
3147* (interpreter interface)
3148*/
3150{
3151 syStrategy syzstr=(syStrategy)u->Data();
3152
3153 BOOLEAN minim=(int)(long)w->Data();
3154 int row_shift=0;
3155 int add_row_shift=0;
3156 intvec *weights=NULL;
3157 intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3158 if (ww!=NULL)
3159 {
3160 weights=ivCopy(ww);
3161 add_row_shift = ww->min_in();
3162 (*weights) -= add_row_shift;
3163 }
3164
3165 res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3166 //row_shift += add_row_shift;
3167 //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3168 atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3169
3170 return FALSE;
3171}
3173{
3174 sleftv tmp;
3175 tmp.Init();
3176 tmp.rtyp=INT_CMD;
3177 tmp.data=(void *)1;
3178 return syBetti2(res,u,&tmp);
3179}
3180
3181/*3
3182* converts a resolution into a list of modules
3183*/
3184lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3185{
3186 resolvente fullres = syzstr->fullres;
3187 resolvente minres = syzstr->minres;
3188
3189 const int length = syzstr->length;
3190
3191 if ((fullres==NULL) && (minres==NULL))
3192 {
3193 if (syzstr->hilb_coeffs==NULL)
3194 { // La Scala
3195 fullres = syReorder(syzstr->res, length, syzstr);
3196 }
3197 else
3198 { // HRES
3199 minres = syReorder(syzstr->orderedRes, length, syzstr);
3200 syKillEmptyEntres(minres, length);
3201 }
3202 }
3203
3204 resolvente tr;
3205 int typ0=IDEAL_CMD;
3206
3207 if (minres!=NULL)
3208 tr = minres;
3209 else
3210 tr = fullres;
3211
3212 resolvente trueres=NULL;
3213 intvec ** w=NULL;
3214
3215 if (length>0)
3216 {
3217 trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3218 for (int i=length-1;i>=0;i--)
3219 {
3220 if (tr[i]!=NULL)
3221 {
3222 trueres[i] = idCopy(tr[i]);
3223 }
3224 }
3225 if ( id_RankFreeModule(trueres[0], currRing) > 0)
3226 typ0 = MODUL_CMD;
3227 if (syzstr->weights!=NULL)
3228 {
3229 w = (intvec**)omAlloc0(length*sizeof(intvec*));
3230 for (int i=length-1;i>=0;i--)
3231 {
3232 if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3233 }
3234 }
3235 }
3236
3237 lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3238 w, add_row_shift);
3239
3240 if (toDel)
3241 syKillComputation(syzstr);
3242 else
3243 {
3244 if( fullres != NULL && syzstr->fullres == NULL )
3245 syzstr->fullres = fullres;
3246
3247 if( minres != NULL && syzstr->minres == NULL )
3248 syzstr->minres = minres;
3249 }
3250 return li;
3251}
3252
3253/*3
3254* converts a list of modules into a resolution
3255*/
3257{
3258 int typ0;
3260
3261 resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3262 if (fr != NULL)
3263 {
3264
3265 result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3266 for (int i=result->length-1;i>=0;i--)
3267 {
3268 if (fr[i]!=NULL)
3269 result->fullres[i] = idCopy(fr[i]);
3270 }
3271 result->list_length=result->length;
3272 omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3273 }
3274 else
3275 {
3276 omFreeSize(result, sizeof(ssyStrategy));
3277 result = NULL;
3278 }
3279 return result;
3280}
3281
3282#if 0
3283/*3
3284* converts a list of modules into a minimal resolution
3285*/
3286syStrategy syForceMin(lists li)
3287{
3288 int typ0;
3290
3291 resolvente fr = liFindRes(li,&(result->length),&typ0);
3292 result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3293 for (int i=result->length-1;i>=0;i--)
3294 {
3295 if (fr[i]!=NULL)
3296 result->minres[i] = idCopy(fr[i]);
3297 }
3298 omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3299 return result;
3300}
3301#endif
3302// from weight.cc
3304{
3305 ideal F=(ideal)id->Data();
3306 intvec * iv = new intvec(rVar(currRing));
3307 polyset s;
3308 int sl, n, i;
3309 int *x;
3310
3311 res->data=(char *)iv;
3312 s = F->m;
3313 sl = IDELEMS(F) - 1;
3314 n = rVar(currRing);
3315 double wNsqr = (double)2.0 / (double)n;
3317 x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3318 wCall(s, sl, x, wNsqr, currRing);
3319 for (i = n; i!=0; i--)
3320 (*iv)[i-1] = x[i + n + 1];
3321 omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3322 return FALSE;
3323}
3324
3326{
3327 res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3328 if (res->data==NULL)
3329 res->data=(char *)new intvec(rVar(currRing));
3330 return FALSE;
3331}
3332/*==============================================================*/
3333// from clapsing.cc
3334#if 0
3335BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3336{
3337 BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3338 res->data=(void *)b;
3339}
3340#endif
3341
3343{
3344 res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3345 (poly)w->CopyD(), currRing);
3346 return errorreported;
3347}
3348
3350{
3351 res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3352 return (res->data==NULL);
3353}
3354
3355// from semic.cc
3356#ifdef HAVE_SPECTRUM
3357
3358// ----------------------------------------------------------------------------
3359// Initialize a spectrum deep from a singular lists
3360// ----------------------------------------------------------------------------
3361
3363{
3364 spec.mu = (int)(long)(l->m[0].Data( ));
3365 spec.pg = (int)(long)(l->m[1].Data( ));
3366 spec.n = (int)(long)(l->m[2].Data( ));
3367
3368 spec.copy_new( spec.n );
3369
3370 intvec *num = (intvec*)l->m[3].Data( );
3371 intvec *den = (intvec*)l->m[4].Data( );
3372 intvec *mul = (intvec*)l->m[5].Data( );
3373
3374 for( int i=0; i<spec.n; i++ )
3375 {
3376 spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3377 spec.w[i] = (*mul)[i];
3378 }
3379}
3380
3381// ----------------------------------------------------------------------------
3382// singular lists constructor for spectrum
3383// ----------------------------------------------------------------------------
3384
3385spectrum /*former spectrum::spectrum ( lists l )*/
3387{
3389 copy_deep( result, l );
3390 return result;
3391}
3392
3393// ----------------------------------------------------------------------------
3394// generate a Singular lists from a spectrum
3395// ----------------------------------------------------------------------------
3396
3397/* former spectrum::thelist ( void )*/
3399{
3401
3402 L->Init( 6 );
3403
3404 intvec *num = new intvec( spec.n );
3405 intvec *den = new intvec( spec.n );
3406 intvec *mult = new intvec( spec.n );
3407
3408 for( int i=0; i<spec.n; i++ )
3409 {
3410 (*num) [i] = spec.s[i].get_num_si( );
3411 (*den) [i] = spec.s[i].get_den_si( );
3412 (*mult)[i] = spec.w[i];
3413 }
3414
3415 L->m[0].rtyp = INT_CMD; // milnor number
3416 L->m[1].rtyp = INT_CMD; // geometrical genus
3417 L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3418 L->m[3].rtyp = INTVEC_CMD; // numerators
3419 L->m[4].rtyp = INTVEC_CMD; // denomiantors
3420 L->m[5].rtyp = INTVEC_CMD; // multiplicities
3421
3422 L->m[0].data = (void*)(long)spec.mu;
3423 L->m[1].data = (void*)(long)spec.pg;
3424 L->m[2].data = (void*)(long)spec.n;
3425 L->m[3].data = (void*)num;
3426 L->m[4].data = (void*)den;
3427 L->m[5].data = (void*)mult;
3428
3429 return L;
3430}
3431// from spectrum.cc
3432// ----------------------------------------------------------------------------
3433// print out an error message for a spectrum list
3434// ----------------------------------------------------------------------------
3435
3436typedef enum
3437{
3440
3443
3450
3455
3461
3464
3467
3469
3471{
3472 switch( state )
3473 {
3474 case semicListTooShort:
3475 WerrorS( "the list is too short" );
3476 break;
3477 case semicListTooLong:
3478 WerrorS( "the list is too long" );
3479 break;
3480
3482 WerrorS( "first element of the list should be int" );
3483 break;
3485 WerrorS( "second element of the list should be int" );
3486 break;
3488 WerrorS( "third element of the list should be int" );
3489 break;
3491 WerrorS( "fourth element of the list should be intvec" );
3492 break;
3494 WerrorS( "fifth element of the list should be intvec" );
3495 break;
3497 WerrorS( "sixth element of the list should be intvec" );
3498 break;
3499
3500 case semicListNNegative:
3501 WerrorS( "first element of the list should be positive" );
3502 break;
3504 WerrorS( "wrong number of numerators" );
3505 break;
3507 WerrorS( "wrong number of denominators" );
3508 break;
3510 WerrorS( "wrong number of multiplicities" );
3511 break;
3512
3514 WerrorS( "the Milnor number should be positive" );
3515 break;
3517 WerrorS( "the geometrical genus should be nonnegative" );
3518 break;
3520 WerrorS( "all numerators should be positive" );
3521 break;
3523 WerrorS( "all denominators should be positive" );
3524 break;
3526 WerrorS( "all multiplicities should be positive" );
3527 break;
3528
3530 WerrorS( "it is not symmetric" );
3531 break;
3533 WerrorS( "it is not monotonous" );
3534 break;
3535
3537 WerrorS( "the Milnor number is wrong" );
3538 break;
3539 case semicListPGWrong:
3540 WerrorS( "the geometrical genus is wrong" );
3541 break;
3542
3543 default:
3544 WerrorS( "unspecific error" );
3545 break;
3546 }
3547}
3548// ----------------------------------------------------------------------------
3549// this is the main spectrum computation function
3550// ----------------------------------------------------------------------------
3551
3553{
3564
3565// from splist.cc
3566// ----------------------------------------------------------------------------
3567// Compute the spectrum of a spectrumPolyList
3568// ----------------------------------------------------------------------------
3569
3570/* former spectrumPolyList::spectrum ( lists*, int) */
3572{
3573 spectrumPolyNode **node = &speclist.root;
3575
3576 poly f,tmp;
3577 int found,cmp;
3578
3579 Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3580 ( fast==2 ? 2 : 1 ) );
3581
3582 Rational weight_prev( 0,1 );
3583
3584 int mu = 0; // the milnor number
3585 int pg = 0; // the geometrical genus
3586 int n = 0; // number of different spectral numbers
3587 int z = 0; // number of spectral number equal to smax
3588
3589 while( (*node)!=(spectrumPolyNode*)NULL &&
3590 ( fast==0 || (*node)->weight<=smax ) )
3591 {
3592 // ---------------------------------------
3593 // determine the first normal form which
3594 // contains the monomial node->mon
3595 // ---------------------------------------
3596
3597 found = FALSE;
3598 search = *node;
3599
3600 while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3601 {
3602 if( search->nf!=(poly)NULL )
3603 {
3604 f = search->nf;
3605
3606 do
3607 {
3608 // --------------------------------
3609 // look for (*node)->mon in f
3610 // --------------------------------
3611
3612 cmp = pCmp( (*node)->mon,f );
3613
3614 if( cmp<0 )
3615 {
3616 f = pNext( f );
3617 }
3618 else if( cmp==0 )
3619 {
3620 // -----------------------------
3621 // we have found a normal form
3622 // -----------------------------
3623
3624 found = TRUE;
3625
3626 // normalize coefficient
3627
3628 number inv = nInvers( pGetCoeff( f ) );
3629 search->nf=__p_Mult_nn( search->nf,inv,currRing );
3630 nDelete( &inv );
3631
3632 // exchange normal forms
3633
3634 tmp = (*node)->nf;
3635 (*node)->nf = search->nf;
3636 search->nf = tmp;
3637 }
3638 }
3639 while( cmp<0 && f!=(poly)NULL );
3640 }
3641 search = search->next;
3642 }
3643
3644 if( found==FALSE )
3645 {
3646 // ------------------------------------------------
3647 // the weight of node->mon is a spectrum number
3648 // ------------------------------------------------
3649
3650 mu++;
3651
3652 if( (*node)->weight<=(Rational)1 ) pg++;
3653 if( (*node)->weight==smax ) z++;
3654 if( (*node)->weight>weight_prev ) n++;
3655
3656 weight_prev = (*node)->weight;
3657 node = &((*node)->next);
3658 }
3659 else
3660 {
3661 // -----------------------------------------------
3662 // determine all other normal form which contain
3663 // the monomial node->mon
3664 // replace for node->mon its normal form
3665 // -----------------------------------------------
3666
3667 while( search!=(spectrumPolyNode*)NULL )
3668 {
3669 if( search->nf!=(poly)NULL )
3670 {
3671 f = search->nf;
3672
3673 do
3674 {
3675 // --------------------------------
3676 // look for (*node)->mon in f
3677 // --------------------------------
3678
3679 cmp = pCmp( (*node)->mon,f );
3680
3681 if( cmp<0 )
3682 {
3683 f = pNext( f );
3684 }
3685 else if( cmp==0 )
3686 {
3687 search->nf = pSub( search->nf,
3688 __pp_Mult_nn( (*node)->nf,pGetCoeff( f ),currRing ) );
3689 pNorm( search->nf );
3690 }
3691 }
3692 while( cmp<0 && f!=(poly)NULL );
3693 }
3694 search = search->next;
3695 }
3696 speclist.delete_node( node );
3697 }
3698
3699 }
3700
3701 // --------------------------------------------------------
3702 // fast computation exploits the symmetry of the spectrum
3703 // --------------------------------------------------------
3704
3705 if( fast==2 )
3706 {
3707 mu = 2*mu - z;
3708 n = ( z > 0 ? 2*n - 1 : 2*n );
3709 }
3710
3711 // --------------------------------------------------------
3712 // compute the spectrum numbers with their multiplicities
3713 // --------------------------------------------------------
3714
3715 intvec *nom = new intvec( n );
3716 intvec *den = new intvec( n );
3717 intvec *mult = new intvec( n );
3718
3719 int count = 0;
3720 int multiplicity = 1;
3721
3722 for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3723 ( fast==0 || search->weight<=smax );
3724 search=search->next )
3725 {
3726 if( search->next==(spectrumPolyNode*)NULL ||
3727 search->weight<search->next->weight )
3728 {
3729 (*nom) [count] = search->weight.get_num_si( );
3730 (*den) [count] = search->weight.get_den_si( );
3731 (*mult)[count] = multiplicity;
3732
3733 multiplicity=1;
3734 count++;
3735 }
3736 else
3737 {
3738 multiplicity++;
3739 }
3740 }
3741
3742 // --------------------------------------------------------
3743 // fast computation exploits the symmetry of the spectrum
3744 // --------------------------------------------------------
3745
3746 if( fast==2 )
3747 {
3748 int n1,n2;
3749 for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3750 {
3751 (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3752 (*den) [n2] = (*den)[n1];
3753 (*mult)[n2] = (*mult)[n1];
3754 }
3755 }
3756
3757 // -----------------------------------
3758 // test if the spectrum is symmetric
3759 // -----------------------------------
3760
3761 if( fast==0 || fast==1 )
3762 {
3763 int symmetric=TRUE;
3764
3765 for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3766 {
3767 if( (*mult)[n1]!=(*mult)[n2] ||
3768 (*den) [n1]!= (*den)[n2] ||
3769 (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3770 {
3771 symmetric = FALSE;
3772 }
3773 }
3774
3775 if( symmetric==FALSE )
3776 {
3777 // ---------------------------------------------
3778 // the spectrum is not symmetric => degenerate
3779 // principal part
3780 // ---------------------------------------------
3781
3782 *L = (lists)omAllocBin( slists_bin);
3783 (*L)->Init( 1 );
3784 (*L)->m[0].rtyp = INT_CMD; // milnor number
3785 (*L)->m[0].data = (void*)(long)mu;
3786
3787 return spectrumDegenerate;
3788 }
3789 }
3790
3791 *L = (lists)omAllocBin( slists_bin);
3792
3793 (*L)->Init( 6 );
3794
3795 (*L)->m[0].rtyp = INT_CMD; // milnor number
3796 (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3797 (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3798 (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3799 (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3800 (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3801
3802 (*L)->m[0].data = (void*)(long)mu;
3803 (*L)->m[1].data = (void*)(long)pg;
3804 (*L)->m[2].data = (void*)(long)n;
3805 (*L)->m[3].data = (void*)nom;
3806 (*L)->m[4].data = (void*)den;
3807 (*L)->m[5].data = (void*)mult;
3808
3809 return spectrumOK;
3810}
3811
3813{
3814 int i;
3815
3816 #ifdef SPECTRUM_DEBUG
3817 #ifdef SPECTRUM_PRINT
3818 #ifdef SPECTRUM_IOSTREAM
3819 cout << "spectrumCompute\n";
3820 if( fast==0 ) cout << " no optimization" << endl;
3821 if( fast==1 ) cout << " weight optimization" << endl;
3822 if( fast==2 ) cout << " symmetry optimization" << endl;
3823 #else
3824 fputs( "spectrumCompute\n",stdout );
3825 if( fast==0 ) fputs( " no optimization\n", stdout );
3826 if( fast==1 ) fputs( " weight optimization\n", stdout );
3827 if( fast==2 ) fputs( " symmetry optimization\n", stdout );
3828 #endif
3829 #endif
3830 #endif
3831
3832 // ----------------------
3833 // check if h is zero
3834 // ----------------------
3835
3836 if( h==(poly)NULL )
3837 {
3838 return spectrumZero;
3839 }
3840
3841 // ----------------------------------
3842 // check if h has a constant term
3843 // ----------------------------------
3844
3845 if( hasConstTerm( h, currRing ) )
3846 {
3847 return spectrumBadPoly;
3848 }
3849
3850 // --------------------------------
3851 // check if h has a linear term
3852 // --------------------------------
3853
3854 if( hasLinearTerm( h, currRing ) )
3855 {
3856 *L = (lists)omAllocBin( slists_bin);
3857 (*L)->Init( 1 );
3858 (*L)->m[0].rtyp = INT_CMD; // milnor number
3859 /* (*L)->m[0].data = (void*)0;a -- done by Init */
3860
3861 return spectrumNoSingularity;
3862 }
3863
3864 // ----------------------------------
3865 // compute the jacobi ideal of (h)
3866 // ----------------------------------
3867
3868 ideal J = NULL;
3869 J = idInit( rVar(currRing),1 );
3870
3871 #ifdef SPECTRUM_DEBUG
3872 #ifdef SPECTRUM_PRINT
3873 #ifdef SPECTRUM_IOSTREAM
3874 cout << "\n computing the Jacobi ideal...\n";
3875 #else
3876 fputs( "\n computing the Jacobi ideal...\n",stdout );
3877 #endif
3878 #endif
3879 #endif
3880
3881 for( i=0; i<rVar(currRing); i++ )
3882 {
3883 J->m[i] = pDiff( h,i+1); //j );
3884
3885 #ifdef SPECTRUM_DEBUG
3886 #ifdef SPECTRUM_PRINT
3887 #ifdef SPECTRUM_IOSTREAM
3888 cout << " ";
3889 #else
3890 fputs(" ", stdout );
3891 #endif
3892 pWrite( J->m[i] );
3893 #endif
3894 #endif
3895 }
3896
3897 // --------------------------------------------
3898 // compute a standard basis stdJ of jac(h)
3899 // --------------------------------------------
3900
3901 #ifdef SPECTRUM_DEBUG
3902 #ifdef SPECTRUM_PRINT
3903 #ifdef SPECTRUM_IOSTREAM
3904 cout << endl;
3905 cout << " computing a standard basis..." << endl;
3906 #else
3907 fputs( "\n", stdout );
3908 fputs( " computing a standard basis...\n", stdout );
3909 #endif
3910 #endif
3911 #endif
3912
3913 ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3914 idSkipZeroes( stdJ );
3915
3916 #ifdef SPECTRUM_DEBUG
3917 #ifdef SPECTRUM_PRINT
3918 for( i=0; i<IDELEMS(stdJ); i++ )
3919 {
3920 #ifdef SPECTRUM_IOSTREAM
3921 cout << " ";
3922 #else
3923 fputs( " ",stdout );
3924 #endif
3925
3926 pWrite( stdJ->m[i] );
3927 }
3928 #endif
3929 #endif
3930
3931 idDelete( &J );
3932
3933 // ------------------------------------------
3934 // check if the h has a singularity
3935 // ------------------------------------------
3936
3937 if( hasOne( stdJ, currRing ) )
3938 {
3939 // -------------------------------
3940 // h is smooth in the origin
3941 // return only the Milnor number
3942 // -------------------------------
3943
3944 *L = (lists)omAllocBin( slists_bin);
3945 (*L)->Init( 1 );
3946 (*L)->m[0].rtyp = INT_CMD; // milnor number
3947 /* (*L)->m[0].data = (void*)0;a -- done by Init */
3948
3949 return spectrumNoSingularity;
3950 }
3951
3952 // ------------------------------------------
3953 // check if the singularity h is isolated
3954 // ------------------------------------------
3955
3956 for( i=rVar(currRing); i>0; i-- )
3957 {
3958 if( hasAxis( stdJ,i, currRing )==FALSE )
3959 {
3960 return spectrumNotIsolated;
3961 }
3962 }
3963
3964 // ------------------------------------------
3965 // compute the highest corner hc of stdJ
3966 // ------------------------------------------
3967
3968 #ifdef SPECTRUM_DEBUG
3969 #ifdef SPECTRUM_PRINT
3970 #ifdef SPECTRUM_IOSTREAM
3971 cout << "\n computing the highest corner...\n";
3972 #else
3973 fputs( "\n computing the highest corner...\n", stdout );
3974 #endif
3975 #endif
3976 #endif
3977
3978 poly hc = (poly)NULL;
3979
3980 scComputeHC( stdJ,currRing->qideal, 0,hc );
3981
3982 if( hc!=(poly)NULL )
3983 {
3984 pGetCoeff(hc) = nInit(1);
3985
3986 for( i=rVar(currRing); i>0; i-- )
3987 {
3988 if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
3989 }
3990 pSetm( hc );
3991 }
3992 else
3993 {
3994 return spectrumNoHC;
3995 }
3996
3997 #ifdef SPECTRUM_DEBUG
3998 #ifdef SPECTRUM_PRINT
3999 #ifdef SPECTRUM_IOSTREAM
4000 cout << " ";
4001 #else
4002 fputs( " ", stdout );
4003 #endif
4004 pWrite( hc );
4005 #endif
4006 #endif
4007
4008 // ----------------------------------------
4009 // compute the Newton polygon nph of h
4010 // ----------------------------------------
4011
4012 #ifdef SPECTRUM_DEBUG
4013 #ifdef SPECTRUM_PRINT
4014 #ifdef SPECTRUM_IOSTREAM
4015 cout << "\n computing the newton polygon...\n";
4016 #else
4017 fputs( "\n computing the newton polygon...\n", stdout );
4018 #endif
4019 #endif
4020 #endif
4021
4022 newtonPolygon nph( h, currRing );
4023
4024 #ifdef SPECTRUM_DEBUG
4025 #ifdef SPECTRUM_PRINT
4026 cout << nph;
4027 #endif
4028 #endif
4029
4030 // -----------------------------------------------
4031 // compute the weight corner wc of (stdj,nph)
4032 // -----------------------------------------------
4033
4034 #ifdef SPECTRUM_DEBUG
4035 #ifdef SPECTRUM_PRINT
4036 #ifdef SPECTRUM_IOSTREAM
4037 cout << "\n computing the weight corner...\n";
4038 #else
4039 fputs( "\n computing the weight corner...\n", stdout );
4040 #endif
4041 #endif
4042 #endif
4043
4044 poly wc = ( fast==0 ? pCopy( hc ) :
4045 ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
4046 /* fast==2 */computeWC( nph,
4047 ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
4048
4049 #ifdef SPECTRUM_DEBUG
4050 #ifdef SPECTRUM_PRINT
4051 #ifdef SPECTRUM_IOSTREAM
4052 cout << " ";
4053 #else
4054 fputs( " ", stdout );
4055 #endif
4056 pWrite( wc );
4057 #endif
4058 #endif
4059
4060 // -------------
4061 // compute NF
4062 // -------------
4063
4064 #ifdef SPECTRUM_DEBUG
4065 #ifdef SPECTRUM_PRINT
4066 #ifdef SPECTRUM_IOSTREAM
4067 cout << "\n computing NF...\n" << endl;
4068 #else
4069 fputs( "\n computing NF...\n", stdout );
4070 #endif
4071 #endif
4072 #endif
4073
4074 spectrumPolyList NF( &nph );
4075
4076 computeNF( stdJ,hc,wc,&NF, currRing );
4077
4078 #ifdef SPECTRUM_DEBUG
4079 #ifdef SPECTRUM_PRINT
4080 cout << NF;
4081 #ifdef SPECTRUM_IOSTREAM
4082 cout << endl;
4083 #else
4084 fputs( "\n", stdout );
4085 #endif
4086 #endif
4087 #endif
4088
4089 // ----------------------------
4090 // compute the spectrum of h
4091 // ----------------------------
4092// spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4093
4094 return spectrumStateFromList(NF, L, fast );
4095}
4096
4097// ----------------------------------------------------------------------------
4098// this procedure is called from the interpreter
4099// ----------------------------------------------------------------------------
4100// first = polynomial
4101// result = list of spectrum numbers
4102// ----------------------------------------------------------------------------
4103
4105{
4106 switch( state )
4107 {
4108 case spectrumZero:
4109 WerrorS( "polynomial is zero" );
4110 break;
4111 case spectrumBadPoly:
4112 WerrorS( "polynomial has constant term" );
4113 break;
4115 WerrorS( "not a singularity" );
4116 break;
4118 WerrorS( "the singularity is not isolated" );
4119 break;
4120 case spectrumNoHC:
4121 WerrorS( "highest corner cannot be computed" );
4122 break;
4123 case spectrumDegenerate:
4124 WerrorS( "principal part is degenerate" );
4125 break;
4126 case spectrumOK:
4127 break;
4128
4129 default:
4130 WerrorS( "unknown error occurred" );
4131 break;
4132 }
4133}
4134
4136{
4137 spectrumState state = spectrumOK;
4138
4139 // -------------------
4140 // check consistency
4141 // -------------------
4142
4143 // check for a local ring
4144
4145 if( !ringIsLocal(currRing ) )
4146 {
4147 WerrorS( "only works for local orderings" );
4148 state = spectrumWrongRing;
4149 }
4150
4151 // no quotient rings are allowed
4152
4153 else if( currRing->qideal != NULL )
4154 {
4155 WerrorS( "does not work in quotient rings" );
4156 state = spectrumWrongRing;
4157 }
4158 else
4159 {
4160 lists L = (lists)NULL;
4161 int flag = 1; // weight corner optimization is safe
4162
4163 state = spectrumCompute( (poly)first->Data( ),&L,flag );
4164
4165 if( state==spectrumOK )
4166 {
4167 result->rtyp = LIST_CMD;
4168 result->data = (char*)L;
4169 }
4170 else
4171 {
4172 spectrumPrintError(state);
4173 }
4174 }
4175
4176 return (state!=spectrumOK);
4177}
4178
4179// ----------------------------------------------------------------------------
4180// this procedure is called from the interpreter
4181// ----------------------------------------------------------------------------
4182// first = polynomial
4183// result = list of spectrum numbers
4184// ----------------------------------------------------------------------------
4185
4187{
4188 spectrumState state = spectrumOK;
4189
4190 // -------------------
4191 // check consistency
4192 // -------------------
4193
4194 // check for a local polynomial ring
4195
4196 if( currRing->OrdSgn != -1 )
4197 // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4198 // or should we use:
4199 //if( !ringIsLocal( ) )
4200 {
4201 WerrorS( "only works for local orderings" );
4202 state = spectrumWrongRing;
4203 }
4204 else if( currRing->qideal != NULL )
4205 {
4206 WerrorS( "does not work in quotient rings" );
4207 state = spectrumWrongRing;
4208 }
4209 else
4210 {
4211 lists L = (lists)NULL;
4212 int flag = 2; // symmetric optimization
4213
4214 state = spectrumCompute( (poly)first->Data( ),&L,flag );
4215
4216 if( state==spectrumOK )
4217 {
4218 result->rtyp = LIST_CMD;
4219 result->data = (char*)L;
4220 }
4221 else
4222 {
4223 spectrumPrintError(state);
4224 }
4225 }
4226
4227 return (state!=spectrumOK);
4228}
4229
4230// ----------------------------------------------------------------------------
4231// check if a list is a spectrum
4232// check for:
4233// list has 6 elements
4234// 1st element is int (mu=Milnor number)
4235// 2nd element is int (pg=geometrical genus)
4236// 3rd element is int (n =number of different spectrum numbers)
4237// 4th element is intvec (num=numerators)
4238// 5th element is intvec (den=denomiantors)
4239// 6th element is intvec (mul=multiplicities)
4240// exactly n numerators
4241// exactly n denominators
4242// exactly n multiplicities
4243// mu>0
4244// pg>=0
4245// n>0
4246// num>0
4247// den>0
4248// mul>0
4249// symmetriy with respect to numberofvariables/2
4250// monotony
4251// mu = sum of all multiplicities
4252// pg = sum of all multiplicities where num/den<=1
4253// ----------------------------------------------------------------------------
4254
4256{
4257 // -------------------
4258 // check list length
4259 // -------------------
4260
4261 if( l->nr < 5 )
4262 {
4263 return semicListTooShort;
4264 }
4265 else if( l->nr > 5 )
4266 {
4267 return semicListTooLong;
4268 }
4269
4270 // -------------
4271 // check types
4272 // -------------
4273
4274 if( l->m[0].rtyp != INT_CMD )
4275 {
4277 }
4278 else if( l->m[1].rtyp != INT_CMD )
4279 {
4281 }
4282 else if( l->m[2].rtyp != INT_CMD )
4283 {
4285 }
4286 else if( l->m[3].rtyp != INTVEC_CMD )
4287 {
4289 }
4290 else if( l->m[4].rtyp != INTVEC_CMD )
4291 {
4293 }
4294 else if( l->m[5].rtyp != INTVEC_CMD )
4295 {
4297 }
4298
4299 // -------------------------
4300 // check number of entries
4301 // -------------------------
4302
4303 int mu = (int)(long)(l->m[0].Data( ));
4304 int pg = (int)(long)(l->m[1].Data( ));
4305 int n = (int)(long)(l->m[2].Data( ));
4306
4307 if( n <= 0 )
4308 {
4309 return semicListNNegative;
4310 }
4311
4312 intvec *num = (intvec*)l->m[3].Data( );
4313 intvec *den = (intvec*)l->m[4].Data( );
4314 intvec *mul = (intvec*)l->m[5].Data( );
4315
4316 if( n != num->length( ) )
4317 {
4319 }
4320 else if( n != den->length( ) )
4321 {
4323 }
4324 else if( n != mul->length( ) )
4325 {
4327 }
4328
4329 // --------
4330 // values
4331 // --------
4332
4333 if( mu <= 0 )
4334 {
4335 return semicListMuNegative;
4336 }
4337 if( pg < 0 )
4338 {
4339 return semicListPgNegative;
4340 }
4341
4342 int i;
4343
4344 for( i=0; i<n; i++ )
4345 {
4346 if( (*num)[i] <= 0 )
4347 {
4348 return semicListNumNegative;
4349 }
4350 if( (*den)[i] <= 0 )
4351 {
4352 return semicListDenNegative;
4353 }
4354 if( (*mul)[i] <= 0 )
4355 {
4356 return semicListMulNegative;
4357 }
4358 }
4359
4360 // ----------------
4361 // check symmetry
4362 // ----------------
4363
4364 int j;
4365
4366 for( i=0, j=n-1; i<=j; i++,j-- )
4367 {
4368 if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4369 (*den)[i] != (*den)[j] ||
4370 (*mul)[i] != (*mul)[j] )
4371 {
4372 return semicListNotSymmetric;
4373 }
4374 }
4375
4376 // ----------------
4377 // check monotony
4378 // ----------------
4379
4380 for( i=0, j=1; i<n/2; i++,j++ )
4381 {
4382 if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4383 {
4385 }
4386 }
4387
4388 // ---------------------
4389 // check Milnor number
4390 // ---------------------
4391
4392 for( mu=0, i=0; i<n; i++ )
4393 {
4394 mu += (*mul)[i];
4395 }
4396
4397 if( mu != (int)(long)(l->m[0].Data( )) )
4398 {
4399 return semicListMilnorWrong;
4400 }
4401
4402 // -------------------------
4403 // check geometrical genus
4404 // -------------------------
4405
4406 for( pg=0, i=0; i<n; i++ )
4407 {
4408 if( (*num)[i]<=(*den)[i] )
4409 {
4410 pg += (*mul)[i];
4411 }
4412 }
4413
4414 if( pg != (int)(long)(l->m[1].Data( )) )
4415 {
4416 return semicListPGWrong;
4417 }
4418
4419 return semicOK;
4420}
4421
4422// ----------------------------------------------------------------------------
4423// this procedure is called from the interpreter
4424// ----------------------------------------------------------------------------
4425// first = list of spectrum numbers
4426// second = list of spectrum numbers
4427// result = sum of the two lists
4428// ----------------------------------------------------------------------------
4429
4431{
4432 semicState state;
4433
4434 // -----------------
4435 // check arguments
4436 // -----------------
4437
4438 lists l1 = (lists)first->Data( );
4439 lists l2 = (lists)second->Data( );
4440
4441 if( (state=list_is_spectrum( l1 )) != semicOK )
4442 {
4443 WerrorS( "first argument is not a spectrum:" );
4444 list_error( state );
4445 }
4446 else if( (state=list_is_spectrum( l2 )) != semicOK )
4447 {
4448 WerrorS( "second argument is not a spectrum:" );
4449 list_error( state );
4450 }
4451 else
4452 {
4453 spectrum s1= spectrumFromList ( l1 );
4454 spectrum s2= spectrumFromList ( l2 );
4455 spectrum sum( s1+s2 );
4456
4457 result->rtyp = LIST_CMD;
4458 result->data = (char*)(getList(sum));
4459 }
4460
4461 return (state!=semicOK);
4462}
4463
4464// ----------------------------------------------------------------------------
4465// this procedure is called from the interpreter
4466// ----------------------------------------------------------------------------
4467// first = list of spectrum numbers
4468// second = integer
4469// result = the multiple of the first list by the second factor
4470// ----------------------------------------------------------------------------
4471
4473{
4474 semicState state;
4475
4476 // -----------------
4477 // check arguments
4478 // -----------------
4479
4480 lists l = (lists)first->Data( );
4481 int k = (int)(long)second->Data( );
4482
4483 if( (state=list_is_spectrum( l ))!=semicOK )
4484 {
4485 WerrorS( "first argument is not a spectrum" );
4486 list_error( state );
4487 }
4488 else if( k < 0 )
4489 {
4490 WerrorS( "second argument should be positive" );
4491 state = semicMulNegative;
4492 }
4493 else
4494 {
4496 spectrum product( k*s );
4497
4498 result->rtyp = LIST_CMD;
4499 result->data = (char*)getList(product);
4500 }
4501
4502 return (state!=semicOK);
4503}
4504
4505// ----------------------------------------------------------------------------
4506// this procedure is called from the interpreter
4507// ----------------------------------------------------------------------------
4508// first = list of spectrum numbers
4509// second = list of spectrum numbers
4510// result = semicontinuity index
4511// ----------------------------------------------------------------------------
4512
4514{
4515 semicState state;
4516 BOOLEAN qh=(((int)(long)w->Data())==1);
4517
4518 // -----------------
4519 // check arguments
4520 // -----------------
4521
4522 lists l1 = (lists)u->Data( );
4523 lists l2 = (lists)v->Data( );
4524
4525 if( (state=list_is_spectrum( l1 ))!=semicOK )
4526 {
4527 WerrorS( "first argument is not a spectrum" );
4528 list_error( state );
4529 }
4530 else if( (state=list_is_spectrum( l2 ))!=semicOK )
4531 {
4532 WerrorS( "second argument is not a spectrum" );
4533 list_error( state );
4534 }
4535 else
4536 {
4537 spectrum s1= spectrumFromList( l1 );
4538 spectrum s2= spectrumFromList( l2 );
4539
4540 res->rtyp = INT_CMD;
4541 if (qh)
4542 res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4543 else
4544 res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4545 }
4546
4547 // -----------------
4548 // check status
4549 // -----------------
4550
4551 return (state!=semicOK);
4552}
4554{
4555 sleftv tmp;
4556 tmp.Init();
4557 tmp.rtyp=INT_CMD;
4558 /* tmp.data = (void *)0; -- done by Init */
4559
4560 return semicProc3(res,u,v,&tmp);
4561}
4562
4563#endif
4564
4566{
4567 res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4568 return FALSE;
4569}
4570
4572{
4573 if ( !(rField_is_long_R(currRing)) )
4574 {
4575 WerrorS("Ground field not implemented!");
4576 return TRUE;
4577 }
4578
4579 simplex * LP;
4580 matrix m;
4581
4582 leftv v= args;
4583 if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4584 return TRUE;
4585 else
4586 m= (matrix)(v->CopyD());
4587
4588 LP = new simplex(MATROWS(m),MATCOLS(m));
4589 LP->mapFromMatrix(m);
4590
4591 v= v->next;
4592 if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4593 return TRUE;
4594 else
4595 LP->m= (int)(long)(v->Data());
4596
4597 v= v->next;
4598 if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4599 return TRUE;
4600 else
4601 LP->n= (int)(long)(v->Data());
4602
4603 v= v->next;
4604 if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4605 return TRUE;
4606 else
4607 LP->m1= (int)(long)(v->Data());
4608
4609 v= v->next;
4610 if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4611 return TRUE;
4612 else
4613 LP->m2= (int)(long)(v->Data());
4614
4615 v= v->next;
4616 if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4617 return TRUE;
4618 else
4619 LP->m3= (int)(long)(v->Data());
4620
4621#ifdef mprDEBUG_PROT
4622 Print("m (constraints) %d\n",LP->m);
4623 Print("n (columns) %d\n",LP->n);
4624 Print("m1 (<=) %d\n",LP->m1);
4625 Print("m2 (>=) %d\n",LP->m2);
4626 Print("m3 (==) %d\n",LP->m3);
4627#endif
4628
4629 LP->compute();
4630
4631 lists lres= (lists)omAlloc( sizeof(slists) );
4632 lres->Init( 6 );
4633
4634 lres->m[0].rtyp= MATRIX_CMD; // output matrix
4635 lres->m[0].data=(void*)LP->mapToMatrix(m);
4636
4637 lres->m[1].rtyp= INT_CMD; // found a solution?
4638 lres->m[1].data=(void*)(long)LP->icase;
4639
4640 lres->m[2].rtyp= INTVEC_CMD;
4641 lres->m[2].data=(void*)LP->posvToIV();
4642
4643 lres->m[3].rtyp= INTVEC_CMD;
4644 lres->m[3].data=(void*)LP->zrovToIV();
4645
4646 lres->m[4].rtyp= INT_CMD;
4647 lres->m[4].data=(void*)(long)LP->m;
4648
4649 lres->m[5].rtyp= INT_CMD;
4650 lres->m[5].data=(void*)(long)LP->n;
4651
4652 res->data= (void*)lres;
4653
4654 return FALSE;
4655}
4656
4658{
4659 ideal gls = (ideal)(arg1->Data());
4660 int imtype= (int)(long)arg2->Data();
4661
4662 uResultant::resMatType mtype= determineMType( imtype );
4663
4664 // check input ideal ( = polynomial system )
4665 if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4666 {
4667 return TRUE;
4668 }
4669
4670 uResultant *resMat= new uResultant( gls, mtype, false );
4671 if (resMat!=NULL)
4672 {
4673 res->rtyp = MODUL_CMD;
4674 res->data= (void*)resMat->accessResMat()->getMatrix();
4675 if (!errorreported) delete resMat;
4676 }
4677 return errorreported;
4678}
4679
4681{
4682 poly gls;
4683 gls= (poly)(arg1->Data());
4684 int howclean= (int)(long)arg3->Data();
4685
4686 if ( gls == NULL || pIsConstant( gls ) )
4687 {
4688 WerrorS("Input polynomial is constant!");
4689 return TRUE;
4690 }
4691
4693 {
4694 int* r=Zp_roots(gls, currRing);
4695 lists rlist;
4696 rlist= (lists)omAlloc( sizeof(slists) );
4697 rlist->Init( r[0] );
4698 for(int i=r[0];i>0;i--)
4699 {
4700 rlist->m[i-1].data=n_Init(r[i],currRing->cf);
4701 rlist->m[i-1].rtyp=NUMBER_CMD;
4702 }
4703 omFree(r);
4704 res->data=rlist;
4705 res->rtyp= LIST_CMD;
4706 return FALSE;
4707 }
4708 if ( !(rField_is_R(currRing) ||
4712 {
4713 WerrorS("Ground field not implemented!");
4714 return TRUE;
4715 }
4716
4719 {
4720 unsigned long int ii = (unsigned long int)arg2->Data();
4721 setGMPFloatDigits( ii, ii );
4722 }
4723
4724 int ldummy;
4725 int deg= currRing->pLDeg( gls, &ldummy, currRing );
4726 int i,vpos=0;
4727 poly piter;
4728 lists elist;
4729
4730 elist= (lists)omAlloc( sizeof(slists) );
4731 elist->Init( 0 );
4732
4733 if ( rVar(currRing) > 1 )
4734 {
4735 piter= gls;
4736 for ( i= 1; i <= rVar(currRing); i++ )
4737 if ( pGetExp( piter, i ) )
4738 {
4739 vpos= i;
4740 break;
4741 }
4742 while ( piter )
4743 {
4744 for ( i= 1; i <= rVar(currRing); i++ )
4745 if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4746 {
4747 WerrorS("The input polynomial must be univariate!");
4748 return TRUE;
4749 }
4750 pIter( piter );
4751 }
4752 }
4753
4754 rootContainer * roots= new rootContainer();
4755 number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4756 piter= gls;
4757 for ( i= deg; i >= 0; i-- )
4758 {
4759 if ( piter && pTotaldegree(piter) == i )
4760 {
4761 pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4762 //nPrint( pcoeffs[i] );PrintS(" ");
4763 pIter( piter );
4764 }
4765 else
4766 {
4767 pcoeffs[i]= nInit(0);
4768 }
4769 }
4770
4771#ifdef mprDEBUG_PROT
4772 for (i=deg; i >= 0; i--)
4773 {
4774 nPrint( pcoeffs[i] );PrintS(" ");
4775 }
4776 PrintLn();
4777#endif
4778
4779 roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4780 roots->solver( howclean );
4781
4782 int elem= roots->getAnzRoots();
4783 char *dummy;
4784 int j;
4785
4786 lists rlist;
4787 rlist= (lists)omAlloc( sizeof(slists) );
4788 rlist->Init( elem );
4789
4791 {
4792 for ( j= 0; j < elem; j++ )
4793 {
4794 rlist->m[j].rtyp=NUMBER_CMD;
4795 rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4796 //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4797 }
4798 }
4799 else
4800 {
4801 for ( j= 0; j < elem; j++ )
4802 {
4803 dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4804 rlist->m[j].rtyp=STRING_CMD;
4805 rlist->m[j].data=(void *)dummy;
4806 }
4807 }
4808
4809 elist->Clean();
4810 //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4811
4812 // this is (via fillContainer) the same data as in root
4813 //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4814 //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4815
4816 delete roots;
4817
4818 res->data= (void*)rlist;
4819
4820 return FALSE;
4821}
4822
4824{
4825 int i;
4826 ideal p,w;
4827 p= (ideal)arg1->Data();
4828 w= (ideal)arg2->Data();
4829
4830 // w[0] = f(p^0)
4831 // w[1] = f(p^1)
4832 // ...
4833 // p can be a vector of numbers (multivariate polynom)
4834 // or one number (univariate polynom)
4835 // tdg = deg(f)
4836
4837 int n= IDELEMS( p );
4838 int m= IDELEMS( w );
4839 int tdg= (int)(long)arg3->Data();
4840
4841 res->data= (void*)NULL;
4842
4843 // check the input
4844 if ( tdg < 1 )
4845 {
4846 WerrorS("Last input parameter must be > 0!");
4847 return TRUE;
4848 }
4849 if ( n != rVar(currRing) )
4850 {
4851 Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4852 return TRUE;
4853 }
4854 if ( m != (int)pow((double)tdg+1,(double)n) )
4855 {
4856 Werror("Size of second input ideal must be equal to %d!",
4857 (int)pow((double)tdg+1,(double)n));
4858 return TRUE;
4859 }
4860 if ( !(rField_is_Q(currRing) /* ||
4861 rField_is_R() || rField_is_long_R() ||
4862 rField_is_long_C()*/ ) )
4863 {
4864 WerrorS("Ground field not implemented!");
4865 return TRUE;
4866 }
4867
4868 number tmp;
4869 number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4870 for ( i= 0; i < n; i++ )
4871 {
4872 pevpoint[i]=nInit(0);
4873 if ( (p->m)[i] )
4874 {
4875 tmp = pGetCoeff( (p->m)[i] );
4876 if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4877 {
4878 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4879 WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4880 return TRUE;
4881 }
4882 } else tmp= NULL;
4883 if ( !nIsZero(tmp) )
4884 {
4885 if ( !pIsConstant((p->m)[i]))
4886 {
4887 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4888 WerrorS("Elements of first input ideal must be numbers!");
4889 return TRUE;
4890 }
4891 pevpoint[i]= nCopy( tmp );
4892 }
4893 }
4894
4895 number *wresults= (number *)omAlloc( m * sizeof( number ) );
4896 for ( i= 0; i < m; i++ )
4897 {
4898 wresults[i]= nInit(0);
4899 if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4900 {
4901 if ( !pIsConstant((w->m)[i]))
4902 {
4903 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4904 omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4905 WerrorS("Elements of second input ideal must be numbers!");
4906 return TRUE;
4907 }
4908 wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4909 }
4910 }
4911
4912 vandermonde vm( m, n, tdg, pevpoint, FALSE );
4913 number *ncpoly= vm.interpolateDense( wresults );
4914 // do not free ncpoly[]!!
4915 poly rpoly= vm.numvec2poly( ncpoly );
4916
4917 omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4918 omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4919
4920 res->data= (void*)rpoly;
4921 return FALSE;
4922}
4923
4925{
4926 leftv v= args;
4927
4928 ideal gls;
4929 int imtype;
4930 int howclean;
4931
4932 // get ideal
4933 if ( v->Typ() != IDEAL_CMD )
4934 return TRUE;
4935 else gls= (ideal)(v->Data());
4936 v= v->next;
4937
4938 // get resultant matrix type to use (0,1)
4939 if ( v->Typ() != INT_CMD )
4940 return TRUE;
4941 else imtype= (int)(long)v->Data();
4942 v= v->next;
4943
4944 if (imtype==0)
4945 {
4946 ideal test_id=idInit(1,1);
4947 int j;
4948 for(j=IDELEMS(gls)-1;j>=0;j--)
4949 {
4950 if (gls->m[j]!=NULL)
4951 {
4952 test_id->m[0]=gls->m[j];
4953 intvec *dummy_w=id_QHomWeight(test_id, currRing);
4954 if (dummy_w!=NULL)
4955 {
4956 WerrorS("Newton polytope not of expected dimension");
4957 delete dummy_w;
4958 return TRUE;
4959 }
4960 }
4961 }
4962 }
4963
4964 // get and set precision in digits ( > 0 )
4965 if ( v->Typ() != INT_CMD )
4966 return TRUE;
4967 else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
4969 {
4970 unsigned long int ii=(unsigned long int)v->Data();
4971 setGMPFloatDigits( ii, ii );
4972 }
4973 v= v->next;
4974
4975 // get interpolation steps (0,1,2)
4976 if ( v->Typ() != INT_CMD )
4977 return TRUE;
4978 else howclean= (int)(long)v->Data();
4979
4980 uResultant::resMatType mtype= determineMType( imtype );
4981 int i,count;
4982 lists listofroots= NULL;
4983 number smv= NULL;
4984 BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
4985
4986 //emptylist= (lists)omAlloc( sizeof(slists) );
4987 //emptylist->Init( 0 );
4988
4989 //res->rtyp = LIST_CMD;
4990 //res->data= (void *)emptylist;
4991
4992 // check input ideal ( = polynomial system )
4993 if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
4994 {
4995 return TRUE;
4996 }
4997
4998 uResultant * ures;
4999 rootContainer ** iproots;
5000 rootContainer ** muiproots;
5001 rootArranger * arranger;
5002
5003 // main task 1: setup of resultant matrix
5004 ures= new uResultant( gls, mtype );
5005 if ( ures->accessResMat()->initState() != resMatrixBase::ready )
5006 {
5007 WerrorS("Error occurred during matrix setup!");
5008 return TRUE;
5009 }
5010
5011 // if dense resultant, check if minor nonsingular
5012 if ( mtype == uResultant::denseResMat )
5013 {
5014 smv= ures->accessResMat()->getSubDet();
5015#ifdef mprDEBUG_PROT
5016 PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
5017#endif
5018 if ( nIsZero(smv) )
5019 {
5020 WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
5021 return TRUE;
5022 }
5023 }
5024
5025 // main task 2: Interpolate specialized resultant polynomials
5026 if ( interpolate_det )
5027 iproots= ures->interpolateDenseSP( false, smv );
5028 else
5029 iproots= ures->specializeInU( false, smv );
5030
5031 // main task 3: Interpolate specialized resultant polynomials
5032 if ( interpolate_det )
5033 muiproots= ures->interpolateDenseSP( true, smv );
5034 else
5035 muiproots= ures->specializeInU( true, smv );
5036
5037#ifdef mprDEBUG_PROT
5038 int c= iproots[0]->getAnzElems();
5039 for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
5040 c= muiproots[0]->getAnzElems();
5041 for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
5042#endif
5043
5044 // main task 4: Compute roots of specialized polys and match them up
5045 arranger= new rootArranger( iproots, muiproots, howclean );
5046 arranger->solve_all();
5047
5048 // get list of roots
5049 if ( arranger->success() )
5050 {
5051 arranger->arrange();
5052 listofroots= listOfRoots(arranger, gmp_output_digits );
5053 }
5054 else
5055 {
5056 WerrorS("Solver was unable to find any roots!");
5057 return TRUE;
5058 }
5059
5060 // free everything
5061 count= iproots[0]->getAnzElems();
5062 for (i=0; i < count; i++) delete iproots[i];
5063 omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
5064 count= muiproots[0]->getAnzElems();
5065 for (i=0; i < count; i++) delete muiproots[i];
5066 omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
5067
5068 delete ures;
5069 delete arranger;
5070 if (smv!=NULL) nDelete( &smv );
5071
5072 res->data= (void *)listofroots;
5073
5074 //emptylist->Clean();
5075 // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
5076
5077 return FALSE;
5078}
5079
5080// from mpr_numeric.cc
5081lists listOfRoots( rootArranger* self, const unsigned int oprec )
5082{
5083 int i,j;
5084 int count= self->roots[0]->getAnzRoots(); // number of roots
5085 int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5086
5087 lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5088
5089 if ( self->found_roots )
5090 {
5091 listofroots->Init( count );
5092
5093 for (i=0; i < count; i++)
5094 {
5095 lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5096 onepoint->Init(elem);
5097 for ( j= 0; j < elem; j++ )
5098 {
5099 if ( !rField_is_long_C(currRing) )
5100 {
5101 onepoint->m[j].rtyp=STRING_CMD;
5102 onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5103 }
5104 else
5105 {
5106 onepoint->m[j].rtyp=NUMBER_CMD;
5107 onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5108 }
5109 onepoint->m[j].next= NULL;
5110 onepoint->m[j].name= NULL;
5111 }
5112 listofroots->m[i].rtyp=LIST_CMD;
5113 listofroots->m[i].data=(void *)onepoint;
5114 listofroots->m[j].next= NULL;
5115 listofroots->m[j].name= NULL;
5116 }
5117
5118 }
5119 else
5120 {
5121 listofroots->Init( 0 );
5122 }
5123
5124 return listofroots;
5125}
5126
5127// from ring.cc
5129{
5130 ring rg = NULL;
5131 if (h!=NULL)
5132 {
5133// Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5134 rg = IDRING(h);
5135 if (rg==NULL) return; //id <>NULL, ring==NULL
5136 omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5137 if (IDID(h)) // OB: ????
5139 rTest(rg);
5140 }
5141 else return;
5142
5143 // clean up history
5144 if (currRing!=NULL)
5145 {
5147 {
5149 }
5150
5151 if (rg!=currRing)/*&&(currRing!=NULL)*/
5152 {
5153 if (rg->cf!=currRing->cf)
5154 {
5157 {
5158 if (TEST_V_ALLWARN)
5159 Warn("deleting denom_list for ring change to %s",IDID(h));
5160 do
5161 {
5162 n_Delete(&(dd->n),currRing->cf);
5163 dd=dd->next;
5166 } while(DENOMINATOR_LIST!=NULL);
5167 }
5168 }
5169 }
5170 }
5171
5172 // test for valid "currRing":
5173 if ((rg!=NULL) && (rg->idroot==NULL))
5174 {
5175 ring old=rg;
5176 rg=rAssure_HasComp(rg);
5177 if (old!=rg)
5178 {
5179 rKill(old);
5180 IDRING(h)=rg;
5181 }
5182 }
5183 /*------------ change the global ring -----------------------*/
5184 rChangeCurrRing(rg);
5185 currRingHdl = h;
5186}
5187
5189{
5190 // change some bad orderings/combination into better ones
5191 leftv h=ord;
5192 while(h!=NULL)
5193 {
5194 BOOLEAN change=FALSE;
5195 intvec *iv = (intvec *)(h->data);
5196 // ws(-i) -> wp(i)
5197 if ((*iv)[1]==ringorder_ws)
5198 {
5199 BOOLEAN neg=TRUE;
5200 for(int i=2;i<iv->length();i++)
5201 if((*iv)[i]>=0) { neg=FALSE; break; }
5202 if (neg)
5203 {
5204 (*iv)[1]=ringorder_wp;
5205 for(int i=2;i<iv->length();i++)
5206 (*iv)[i]= - (*iv)[i];
5207 change=TRUE;
5208 }
5209 }
5210 // Ws(-i) -> Wp(i)
5211 if ((*iv)[1]==ringorder_Ws)
5212 {
5213 BOOLEAN neg=TRUE;
5214 for(int i=2;i<iv->length();i++)
5215 if((*iv)[i]>=0) { neg=FALSE; break; }
5216 if (neg)
5217 {
5218 (*iv)[1]=ringorder_Wp;
5219 for(int i=2;i<iv->length();i++)
5220 (*iv)[i]= -(*iv)[i];
5221 change=TRUE;
5222 }
5223 }
5224 // wp(1) -> dp
5225 if ((*iv)[1]==ringorder_wp)
5226 {
5227 BOOLEAN all_one=TRUE;
5228 for(int i=2;i<iv->length();i++)
5229 if((*iv)[i]!=1) { all_one=FALSE; break; }
5230 if (all_one)
5231 {
5232 intvec *iv2=new intvec(3);
5233 (*iv2)[0]=1;
5234 (*iv2)[1]=ringorder_dp;
5235 (*iv2)[2]=iv->length()-2;
5236 delete iv;
5237 iv=iv2;
5238 h->data=iv2;
5239 change=TRUE;
5240 }
5241 }
5242 // Wp(1) -> Dp
5243 if ((*iv)[1]==ringorder_Wp)
5244 {
5245 BOOLEAN all_one=TRUE;
5246 for(int i=2;i<iv->length();i++)
5247 if((*iv)[i]!=1) { all_one=FALSE; break; }
5248 if (all_one)
5249 {
5250 intvec *iv2=new intvec(3);
5251 (*iv2)[0]=1;
5252 (*iv2)[1]=ringorder_Dp;
5253 (*iv2)[2]=iv->length()-2;
5254 delete iv;
5255 iv=iv2;
5256 h->data=iv2;
5257 change=TRUE;
5258 }
5259 }
5260 // dp(1)/Dp(1)/rp(1) -> lp(1)
5261 if (((*iv)[1]==ringorder_dp)
5262 || ((*iv)[1]==ringorder_Dp)
5263 || ((*iv)[1]==ringorder_rp))
5264 {
5265 if (iv->length()==3)
5266 {
5267 if ((*iv)[2]==1)
5268 {
5269 if(h->next!=NULL)
5270 {
5271 intvec *iv2 = (intvec *)(h->next->data);
5272 if ((*iv2)[1]==ringorder_lp)
5273 {
5274 (*iv)[1]=ringorder_lp;
5275 change=TRUE;
5276 }
5277 }
5278 }
5279 }
5280 }
5281 // lp(i),lp(j) -> lp(i+j)
5282 if(((*iv)[1]==ringorder_lp)
5283 && (h->next!=NULL))
5284 {
5285 intvec *iv2 = (intvec *)(h->next->data);
5286 if ((*iv2)[1]==ringorder_lp)
5287 {
5288 leftv hh=h->next;
5289 h->next=hh->next;
5290 hh->next=NULL;
5291 if ((*iv2)[0]==1)
5292 (*iv)[2] += 1; // last block unspecified, at least 1
5293 else
5294 (*iv)[2] += (*iv2)[2];
5295 hh->CleanUp();
5297 change=TRUE;
5298 }
5299 }
5300 // -------------------
5301 if (!change) h=h->next;
5302 }
5303 return ord;
5304}
5305
5306
5308{
5309 int last = 0, o=0, n = 1, i=0, typ = 1, j;
5310 ord=rOptimizeOrdAsSleftv(ord);
5311 sleftv *sl = ord;
5312
5313 // determine nBlocks
5314 while (sl!=NULL)
5315 {
5316 intvec *iv = (intvec *)(sl->data);
5317 if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5318 i++;
5319 else if ((*iv)[1]==ringorder_L)
5320 {
5321 R->wanted_maxExp=(*iv)[2]*2+1;
5322 n--;
5323 }
5324 else if (((*iv)[1]!=ringorder_a)
5325 && ((*iv)[1]!=ringorder_a64)
5326 && ((*iv)[1]!=ringorder_am))
5327 o++;
5328 n++;
5329 sl=sl->next;
5330 }
5331 // check whether at least one real ordering
5332 if (o==0)
5333 {
5334 WerrorS("invalid combination of orderings");
5335 return TRUE;
5336 }
5337 // if no c/C ordering is given, increment n
5338 if (i==0) n++;
5339 else if (i != 1)
5340 {
5341 // throw error if more than one is given
5342 WerrorS("more than one ordering c/C specified");
5343 return TRUE;
5344 }
5345
5346 // initialize fields of R
5347 R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
5348 R->block0=(int *)omAlloc0(n*sizeof(int));
5349 R->block1=(int *)omAlloc0(n*sizeof(int));
5350 R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5351
5352 int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5353
5354 // init order, so that rBlocks works correctly
5355 for (j=0; j < n-1; j++)
5356 R->order[j] = ringorder_unspec;
5357 // set last _C order, if no c/C order was given
5358 if (i == 0) R->order[n-2] = ringorder_C;
5359
5360 /* init orders */
5361 sl=ord;
5362 n=-1;
5363 while (sl!=NULL)
5364 {
5365 intvec *iv;
5366 iv = (intvec *)(sl->data);
5367 if ((*iv)[1]!=ringorder_L)
5368 {
5369 n++;
5370
5371 /* the format of an ordering:
5372 * iv[0]: factor
5373 * iv[1]: ordering
5374 * iv[2..end]: weights
5375 */
5376 R->order[n] = (rRingOrder_t)((*iv)[1]);
5377 typ=1;
5378 switch ((*iv)[1])
5379 {
5380 case ringorder_ws:
5381 case ringorder_Ws:
5382 typ=-1; // and continue
5383 case ringorder_wp:
5384 case ringorder_Wp:
5385 R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5386 R->block0[n] = last+1;
5387 for (i=2; i<iv->length(); i++)
5388 {
5389 R->wvhdl[n][i-2] = (*iv)[i];
5390 last++;
5391 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5392 }
5393 R->block1[n] = si_min(last,R->N);
5394 break;
5395 case ringorder_ls:
5396 case ringorder_ds:
5397 case ringorder_Ds:
5398 case ringorder_rs:
5399 typ=-1; // and continue
5400 case ringorder_lp:
5401 case ringorder_dp:
5402 case ringorder_Dp:
5403 case ringorder_rp:
5404 R->block0[n] = last+1;
5405 if (iv->length() == 3) last+=(*iv)[2];
5406 else last += (*iv)[0];
5407 R->block1[n] = si_min(last,R->N);
5408 if (rCheckIV(iv)) return TRUE;
5409 for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5410 {
5411 if (weights[i]==0) weights[i]=typ;
5412 }
5413 break;
5414
5415 case ringorder_s: // no 'rank' params!
5416 {
5417
5418 if(iv->length() > 3)
5419 return TRUE;
5420
5421 if(iv->length() == 3)
5422 {
5423 const int s = (*iv)[2];
5424 R->block0[n] = s;
5425 R->block1[n] = s;
5426 }
5427 break;
5428 }
5429 case ringorder_IS:
5430 {
5431 if(iv->length() != 3) return TRUE;
5432
5433 const int s = (*iv)[2];
5434
5435 if( 1 < s || s < -1 ) return TRUE;
5436
5437 R->block0[n] = s;
5438 R->block1[n] = s;
5439 break;
5440 }
5441 case ringorder_S:
5442 case ringorder_c:
5443 case ringorder_C:
5444 {
5445 if (rCheckIV(iv)) return TRUE;
5446 break;
5447 }
5448 case ringorder_aa:
5449 case ringorder_a:
5450 {
5451 R->block0[n] = last+1;
5452 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5453 R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5454 for (i=2; i<iv->length(); i++)
5455 {
5456 R->wvhdl[n][i-2]=(*iv)[i];
5457 last++;
5458 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5459 }
5460 last=R->block0[n]-1;
5461 break;
5462 }
5463 case ringorder_am:
5464 {
5465 R->block0[n] = last+1;
5466 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5467 R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5468 if (R->block1[n]- R->block0[n]+2>=iv->length())
5469 WarnS("missing module weights");
5470 for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5471 {
5472 R->wvhdl[n][i-2]=(*iv)[i];
5473 last++;
5474 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5475 }
5476 R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5477 for (; i<iv->length(); i++)
5478 {
5479 R->wvhdl[n][i-1]=(*iv)[i];
5480 }
5481 last=R->block0[n]-1;
5482 break;
5483 }
5484 case ringorder_a64:
5485 {
5486 R->block0[n] = last+1;
5487 R->block1[n] = si_min(last+iv->length()-2 , R->N);
5488 R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5489 int64 *w=(int64 *)R->wvhdl[n];
5490 for (i=2; i<iv->length(); i++)
5491 {
5492 w[i-2]=(*iv)[i];
5493 last++;
5494 if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5495 }
5496 last=R->block0[n]-1;
5497 break;
5498 }
5499 case ringorder_M:
5500 {
5501 int Mtyp=rTypeOfMatrixOrder(iv);
5502 if (Mtyp==0) return TRUE;
5503 if (Mtyp==-1) typ = -1;
5504
5505 R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5506 for (i=2; i<iv->length();i++)
5507 R->wvhdl[n][i-2]=(*iv)[i];
5508
5509 R->block0[n] = last+1;
5510 last += (int)sqrt((double)(iv->length()-2));
5511 R->block1[n] = si_min(last,R->N);
5512 for(i=R->block1[n];i>=R->block0[n];i--)
5513 {
5514 if (weights[i]==0) weights[i]=typ;
5515 }
5516 break;
5517 }
5518
5519 case ringorder_no:
5520 R->order[n] = ringorder_unspec;
5521 return TRUE;
5522
5523 default:
5524 Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5525 R->order[n] = ringorder_unspec;
5526 return TRUE;
5527 }
5528 }
5529 if (last>R->N)
5530 {
5531 Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5532 R->N,last);
5533 return TRUE;
5534 }
5535 sl=sl->next;
5536 }
5537 // find OrdSgn:
5538 R->OrdSgn = 1;
5539 for(i=1;i<=R->N;i++)
5540 { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5541 omFree(weights);
5542
5543 // check for complete coverage
5544 while ( n >= 0 && (
5545 (R->order[n]==ringorder_c)
5546 || (R->order[n]==ringorder_C)
5547 || (R->order[n]==ringorder_s)
5548 || (R->order[n]==ringorder_S)
5549 || (R->order[n]==ringorder_IS)
5550 )) n--;
5551
5552 assume( n >= 0 );
5553
5554 if (R->block1[n] != R->N)
5555 {
5556 if (((R->order[n]==ringorder_dp) ||
5557 (R->order[n]==ringorder_ds) ||
5558 (R->order[n]==ringorder_Dp) ||
5559 (R->order[n]==ringorder_Ds) ||
5560 (R->order[n]==ringorder_rp) ||
5561 (R->order[n]==ringorder_rs) ||
5562 (R->order[n]==ringorder_lp) ||
5563 (R->order[n]==ringorder_ls))
5564 &&
5565 R->block0[n] <= R->N)
5566 {
5567 R->block1[n] = R->N;
5568 }
5569 else
5570 {
5571 Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5572 R->N,R->block1[n]);
5573 return TRUE;
5574 }
5575 }
5576 return FALSE;
5577}
5578
5580{
5581
5582 while(sl!=NULL)
5583 {
5584 if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5585 {
5586 *p = omStrDup(sl->Name());
5587 }
5588 else if (sl->name!=NULL)
5589 {
5590 *p = (char*)sl->name;
5591 sl->name=NULL;
5592 }
5593 else if (sl->rtyp==POLY_CMD)
5594 {
5595 sleftv s_sl;
5596 iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5597 if (s_sl.name != NULL)
5598 {
5599 *p = (char*)s_sl.name; s_sl.name=NULL;
5600 }
5601 else
5602 *p = NULL;
5603 sl->next = s_sl.next;
5604 s_sl.next = NULL;
5605 s_sl.CleanUp();
5606 if (*p == NULL) return TRUE;
5607 }
5608 else return TRUE;
5609 p++;
5610 sl=sl->next;
5611 }
5612 return FALSE;
5613}
5614
5615const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5616
5617////////////////////
5618//
5619// rInit itself:
5620//
5621// INPUT: pn: ch & parameter (names), rv: variable (names)
5622// ord: ordering (all !=NULL)
5623// RETURN: currRingHdl on success
5624// NULL on error
5625// NOTE: * makes new ring to current ring, on success
5626// * considers input sleftv's as read-only
5627ring rInit(leftv pn, leftv rv, leftv ord)
5628{
5629 int float_len=0;
5630 int float_len2=0;
5631 ring R = NULL;
5632 //BOOLEAN ffChar=FALSE;
5633
5634 /* ch -------------------------------------------------------*/
5635 // get ch of ground field
5636
5637 // allocated ring
5638 R = (ring) omAlloc0Bin(sip_sring_bin);
5639
5640 coeffs cf = NULL;
5641
5642 assume( pn != NULL );
5643 const int P = pn->listLength();
5644
5645 if (pn->Typ()==CRING_CMD)
5646 {
5647 cf=(coeffs)pn->CopyD();
5648 leftv pnn=pn;
5649 if(P>1) /*parameter*/
5650 {
5651 pnn = pnn->next;
5652 const int pars = pnn->listLength();
5653 assume( pars > 0 );
5654 char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5655
5656 if (rSleftvList2StringArray(pnn, names))
5657 {
5658 WerrorS("parameter expected");
5659 goto rInitError;
5660 }
5661
5662 TransExtInfo extParam;
5663
5664 extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5665 for(int i=pars-1; i>=0;i--)
5666 {
5667 omFree(names[i]);
5668 }
5669 omFree(names);
5670
5671 cf = nInitChar(n_transExt, &extParam);
5672 }
5673 assume( cf != NULL );
5674 }
5675 else if (pn->Typ()==INT_CMD)
5676 {
5677 int ch = (int)(long)pn->Data();
5678 leftv pnn=pn;
5679
5680 /* parameter? -------------------------------------------------------*/
5681 pnn = pnn->next;
5682
5683 if (pnn == NULL) // no params!?
5684 {
5685 if (ch!=0)
5686 {
5687 int ch2=IsPrime(ch);
5688 if ((ch<2)||(ch!=ch2))
5689 {
5690 Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5691 ch=32003;
5692 }
5693 #ifndef TEST_ZN_AS_ZP
5694 cf = nInitChar(n_Zp, (void*)(long)ch);
5695 #else
5696 mpz_t modBase;
5697 mpz_init_set_ui(modBase, (long)ch);
5698 ZnmInfo info;
5699 info.base= modBase;
5700 info.exp= 1;
5701 cf=nInitChar(n_Zn,(void*) &info);
5702 cf->is_field=1;
5703 cf->is_domain=1;
5704 cf->has_simple_Inverse=1;
5705 #endif
5706 }
5707 else
5708 cf = nInitChar(n_Q, (void*)(long)ch);
5709 }
5710 else
5711 {
5712 const int pars = pnn->listLength();
5713
5714 assume( pars > 0 );
5715
5716 // predefined finite field: (p^k, a)
5717 if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5718 {
5719 GFInfo param;
5720
5721 param.GFChar = ch;
5722 param.GFDegree = 1;
5723 param.GFPar_name = pnn->name;
5724
5725 cf = nInitChar(n_GF, &param);
5726 }
5727 else // (0/p, a, b, ..., z)
5728 {
5729 if ((ch!=0) && (ch!=IsPrime(ch)))
5730 {
5731 WerrorS("too many parameters");
5732 goto rInitError;
5733 }
5734
5735 char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5736
5737 if (rSleftvList2StringArray(pnn, names))
5738 {
5739 WerrorS("parameter expected");
5740 goto rInitError;
5741 }
5742
5743 TransExtInfo extParam;
5744
5745 extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5746 for(int i=pars-1; i>=0;i--)
5747 {
5748 omFree(names[i]);
5749 }
5750 omFree(names);
5751
5752 cf = nInitChar(n_transExt, &extParam);
5753 }
5754 }
5755
5756 //if (cf==NULL) ->Error: Invalid ground field specification
5757 }
5758 else if ((pn->name != NULL)
5759 && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5760 {
5761 leftv pnn=pn->next;
5762 BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5763 if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5764 {
5765 float_len=(int)(long)pnn->Data();
5766 float_len2=float_len;
5767 pnn=pnn->next;
5768 if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5769 {
5770 float_len2=(int)(long)pnn->Data();
5771 pnn=pnn->next;
5772 }
5773 }
5774
5775 if (!complex_flag)
5776 complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5777 if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5778 cf=nInitChar(n_R, NULL);
5779 else // longR or longC?
5780 {
5781 LongComplexInfo param;
5782
5783 param.float_len = si_min (float_len, 32767);
5784 param.float_len2 = si_min (float_len2, 32767);
5785
5786 // set the parameter name
5787 if (complex_flag)
5788 {
5789 if (param.float_len < SHORT_REAL_LENGTH)
5790 {
5793 }
5794 if ((pnn == NULL) || (pnn->name == NULL))
5795 param.par_name=(const char*)"i"; //default to i
5796 else
5797 param.par_name = (const char*)pnn->name;
5798 }
5799
5800 cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5801 }
5802 assume( cf != NULL );
5803 }
5804#ifdef HAVE_RINGS
5805 else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5806 {
5807 // TODO: change to use coeffs_BIGINT!?
5808 mpz_t modBase;
5809 unsigned int modExponent = 1;
5810 mpz_init_set_si(modBase, 0);
5811 if (pn->next!=NULL)
5812 {
5813 leftv pnn=pn;
5814 if (pnn->next->Typ()==INT_CMD)
5815 {
5816 pnn=pnn->next;
5817 mpz_set_ui(modBase, (long) pnn->Data());
5818 if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5819 {
5820 pnn=pnn->next;
5821 modExponent = (long) pnn->Data();
5822 }
5823 while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5824 {
5825 pnn=pnn->next;
5826 mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5827 }
5828 }
5829 else if (pnn->next->Typ()==BIGINT_CMD)
5830 {
5831 number p=(number)pnn->next->CopyD();
5832 n_MPZ(modBase,p,coeffs_BIGINT);
5834 }
5835 }
5836 else
5838
5839 if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
5840 {
5841 WerrorS("Wrong ground ring specification (module is 1)");
5842 goto rInitError;
5843 }
5844 if (modExponent < 1)
5845 {
5846 WerrorS("Wrong ground ring specification (exponent smaller than 1");
5847 goto rInitError;
5848 }
5849 // module is 0 ---> integers ringtype = 4;
5850 // we have an exponent
5851 if (modExponent > 1 && cf == NULL)
5852 {
5853 if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5854 {
5855 /* this branch should be active for modExponent = 2..32 resp. 2..64,
5856 depending on the size of a long on the respective platform */
5857 //ringtype = 1; // Use Z/2^ch
5858 cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5859 }
5860 else
5861 {
5862 if (mpz_sgn1(modBase)==0)
5863 {
5864 WerrorS("modulus must not be 0 or parameter not allowed");
5865 goto rInitError;
5866 }
5867 //ringtype = 3;
5868 ZnmInfo info;
5869 info.base= modBase;
5870 info.exp= modExponent;
5871 cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5872 }
5873 }
5874 // just a module m > 1
5875 else if (cf == NULL)
5876 {
5877 if (mpz_sgn1(modBase)==0)
5878 {
5879 WerrorS("modulus must not be 0 or parameter not allowed");
5880 goto rInitError;
5881 }
5882 //ringtype = 2;
5883 ZnmInfo info;
5884 info.base= modBase;
5885 info.exp= modExponent;
5886 cf=nInitChar(n_Zn,(void*) &info);
5887 }
5888 assume( cf != NULL );
5889 mpz_clear(modBase);
5890 }
5891#endif
5892 // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5893 else if ((pn->Typ()==RING_CMD) && (P == 1))
5894 {
5895 ring r=(ring)pn->Data();
5896 if (r->qideal==NULL)
5897 {
5898 TransExtInfo extParam;
5899 extParam.r = r;
5900 extParam.r->ref++;
5901 cf = nInitChar(n_transExt, &extParam); // R(a)
5902 }
5903 else if (IDELEMS(r->qideal)==1)
5904 {
5905 AlgExtInfo extParam;
5906 extParam.r=r;
5907 extParam.r->ref++;
5908 cf = nInitChar(n_algExt, &extParam); // R[a]/<minideal>
5909 }
5910 else
5911 {
5912 WerrorS("algebraic extension ring must have one minpoly");
5913 goto rInitError;
5914 }
5915 }
5916 else
5917 {
5918 WerrorS("Wrong or unknown ground field specification");
5919#if 0
5920// debug stuff for unknown cf descriptions:
5921 sleftv* p = pn;
5922 while (p != NULL)
5923 {
5924 Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5925 PrintLn();
5926 p = p->next;
5927 }
5928#endif
5929 goto rInitError;
5930 }
5931
5932 /*every entry in the new ring is initialized to 0*/
5933
5934 /* characteristic -----------------------------------------------*/
5935 /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
5936 * 0 1 : Q(a,...) *names FALSE
5937 * 0 -1 : R NULL FALSE 0
5938 * 0 -1 : R NULL FALSE prec. >6
5939 * 0 -1 : C *names FALSE prec. 0..?
5940 * p p : Fp NULL FALSE
5941 * p -p : Fp(a) *names FALSE
5942 * q q : GF(q=p^n) *names TRUE
5943 */
5944 if (cf==NULL)
5945 {
5946 WerrorS("Invalid ground field specification");
5947 goto rInitError;
5948// const int ch=32003;
5949// cf=nInitChar(n_Zp, (void*)(long)ch);
5950 }
5951
5952 assume( R != NULL );
5953
5954 R->cf = cf;
5955
5956 /* names and number of variables-------------------------------------*/
5957 {
5958 int l=rv->listLength();
5959
5960 if (l>MAX_SHORT)
5961 {
5962 Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5963 goto rInitError;
5964 }
5965 R->N = l; /*rv->listLength();*/
5966 }
5967 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5968 if (rSleftvList2StringArray(rv, R->names))
5969 {
5970 WerrorS("name of ring variable expected");
5971 goto rInitError;
5972 }
5973
5974 /* check names and parameters for conflicts ------------------------- */
5975 rRenameVars(R); // conflicting variables will be renamed
5976 /* ordering -------------------------------------------------------------*/
5977 if (rSleftvOrdering2Ordering(ord, R))
5978 goto rInitError;
5979
5980 // Complete the initialization
5981 if (rComplete(R,1))
5982 goto rInitError;
5983
5984/*#ifdef HAVE_RINGS
5985// currently, coefficients which are ring elements require a global ordering:
5986 if (rField_is_Ring(R) && (R->OrdSgn==-1))
5987 {
5988 WerrorS("global ordering required for these coefficients");
5989 goto rInitError;
5990 }
5991#endif*/
5992
5993 rTest(R);
5994
5995 // try to enter the ring into the name list
5996 // need to clean up sleftv here, before this ring can be set to
5997 // new currRing or currRing can be killed beacuse new ring has
5998 // same name
5999 pn->CleanUp();
6000 rv->CleanUp();
6001 ord->CleanUp();
6002 //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
6003 // goto rInitError;
6004
6005 //memcpy(IDRING(tmp),R,sizeof(*R));
6006 // set current ring
6007 //omFreeBin(R, ip_sring_bin);
6008 //return tmp;
6009 return R;
6010
6011 // error case:
6012 rInitError:
6013 if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
6014 pn->CleanUp();
6015 rv->CleanUp();
6016 ord->CleanUp();
6017 return NULL;
6018}
6019
6020ring rSubring(ring org_ring, sleftv* rv)
6021{
6022 ring R = rCopy0(org_ring);
6023 int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
6024 int n = rBlocks(org_ring), i=0, j;
6025
6026 /* names and number of variables-------------------------------------*/
6027 {
6028 int l=rv->listLength();
6029 if (l>MAX_SHORT)
6030 {
6031 Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
6032 goto rInitError;
6033 }
6034 R->N = l; /*rv->listLength();*/
6035 }
6036 omFree(R->names);
6037 R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
6038 if (rSleftvList2StringArray(rv, R->names))
6039 {
6040 WerrorS("name of ring variable expected");
6041 goto rInitError;
6042 }
6043
6044 /* check names for subring in org_ring ------------------------- */
6045 {
6046 i=0;
6047
6048 for(j=0;j<R->N;j++)
6049 {
6050 for(;i<org_ring->N;i++)
6051 {
6052 if (strcmp(org_ring->names[i],R->names[j])==0)
6053 {
6054 perm[i+1]=j+1;
6055 break;
6056 }
6057 }
6058 if (i>org_ring->N)
6059 {
6060 Werror("variable %d (%s) not in basering",j+1,R->names[j]);
6061 break;
6062 }
6063 }
6064 }
6065 //Print("perm=");
6066 //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
6067 /* ordering -------------------------------------------------------------*/
6068
6069 for(i=0;i<n;i++)
6070 {
6071 int min_var=-1;
6072 int max_var=-1;
6073 for(j=R->block0[i];j<=R->block1[i];j++)
6074 {
6075 if (perm[j]>0)
6076 {
6077 if (min_var==-1) min_var=perm[j];
6078 max_var=perm[j];
6079 }
6080 }
6081 if (min_var!=-1)
6082 {
6083 //Print("block %d: old %d..%d, now:%d..%d\n",
6084 // i,R->block0[i],R->block1[i],min_var,max_var);
6085 R->block0[i]=min_var;
6086 R->block1[i]=max_var;
6087 if (R->wvhdl[i]!=NULL)
6088 {
6089 omFree(R->wvhdl[i]);
6090 R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
6091 for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
6092 {
6093 if (perm[j]>0)
6094 {
6095 R->wvhdl[i][perm[j]-R->block0[i]]=
6096 org_ring->wvhdl[i][j-org_ring->block0[i]];
6097 //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
6098 }
6099 }
6100 }
6101 }
6102 else
6103 {
6104 if(R->block0[i]>0)
6105 {
6106 //Print("skip block %d\n",i);
6107 R->order[i]=ringorder_unspec;
6108 if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
6109 R->wvhdl[i]=NULL;
6110 }
6111 //else Print("keep block %d\n",i);
6112 }
6113 }
6114 i=n-1;
6115 while(i>0)
6116 {
6117 // removed unneded blocks
6118 if(R->order[i-1]==ringorder_unspec)
6119 {
6120 for(j=i;j<=n;j++)
6121 {
6122 R->order[j-1]=R->order[j];
6123 R->block0[j-1]=R->block0[j];
6124 R->block1[j-1]=R->block1[j];
6125 if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
6126 R->wvhdl[j-1]=R->wvhdl[j];
6127 }
6128 R->order[n]=ringorder_unspec;
6129 n--;
6130 }
6131 i--;
6132 }
6133 n=rBlocks(org_ring)-1;
6134 while (R->order[n]==0) n--;
6135 while (R->order[n]==ringorder_unspec) n--;
6136 if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6137 if (R->block1[n] != R->N)
6138 {
6139 if (((R->order[n]==ringorder_dp) ||
6140 (R->order[n]==ringorder_ds) ||
6141 (R->order[n]==ringorder_Dp) ||
6142 (R->order[n]==ringorder_Ds) ||
6143 (R->order[n]==ringorder_rp) ||
6144 (R->order[n]==ringorder_rs) ||
6145 (R->order[n]==ringorder_lp) ||
6146 (R->order[n]==ringorder_ls))
6147 &&
6148 R->block0[n] <= R->N)
6149 {
6150 R->block1[n] = R->N;
6151 }
6152 else
6153 {
6154 Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6155 R->N,R->block1[n],n);
6156 return NULL;
6157 }
6158 }
6159 omFree(perm);
6160 // find OrdSgn:
6161 R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6162 //for(i=1;i<=R->N;i++)
6163 //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6164 //omFree(weights);
6165 // Complete the initialization
6166 if (rComplete(R,1))
6167 goto rInitError;
6168
6169 rTest(R);
6170
6171 if (rv != NULL) rv->CleanUp();
6172
6173 return R;
6174
6175 // error case:
6176 rInitError:
6177 if (R != NULL) rDelete(R);
6178 if (rv != NULL) rv->CleanUp();
6179 return NULL;
6180}
6181
6182void rKill(ring r)
6183{
6184 if ((r->ref<=0)&&(r->order!=NULL))
6185 {
6186#ifdef RDEBUG
6187 if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6188#endif
6189 int j;
6190 for (j=0;j<myynest;j++)
6191 {
6192 if (iiLocalRing[j]==r)
6193 {
6194 if (j==0) WarnS("killing the basering for level 0");
6196 }
6197 }
6198// any variables depending on r ?
6199 while (r->idroot!=NULL)
6200 {
6201 r->idroot->lev=myynest; // avoid warning about kill global objects
6202 killhdl2(r->idroot,&(r->idroot),r);
6203 }
6204 if (r==currRing)
6205 {
6206 // all dependend stuff is done, clean global vars:
6207 if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6209 {
6211 }
6212 //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6213 //{
6214 // WerrorS("return value depends on local ring variable (export missing ?)");
6215 // iiRETURNEXPR.CleanUp();
6216 //}
6217 currRing=NULL;
6219 }
6220
6221 /* nKillChar(r); will be called from inside of rDelete */
6222 rDelete(r);
6223 return;
6224 }
6225 rDecRefCnt(r);
6226}
6227
6229{
6230 ring r = IDRING(h);
6231 int ref=0;
6232 if (r!=NULL)
6233 {
6234 // avoid, that sLastPrinted is the last reference to the base ring:
6235 // clean up before killing the last "named" refrence:
6237 && (sLastPrinted.data==(void*)r))
6238 {
6240 }
6241 ref=r->ref;
6242 if ((ref<=0)&&(r==currRing))
6243 {
6244 // cleanup DENOMINATOR_LIST
6246 {
6248 if (TEST_V_ALLWARN)
6249 Warn("deleting denom_list for ring change from %s",IDID(h));
6250 do
6251 {
6252 n_Delete(&(dd->n),currRing->cf);
6253 dd=dd->next;
6256 } while(DENOMINATOR_LIST!=NULL);
6257 }
6258 }
6259 rKill(r);
6260 }
6261 if (h==currRingHdl)
6262 {
6263 if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6264 else
6265 {
6267 }
6268 }
6269}
6270
6271static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
6272{
6273 idhdl h=root;
6274 while (h!=NULL)
6275 {
6276 if ((IDTYP(h)==RING_CMD)
6277 && (h!=n)
6278 && (IDRING(h)==r)
6279 )
6280 {
6281 return h;
6282 }
6283 h=IDNEXT(h);
6284 }
6285 return NULL;
6286}
6287
6288extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6289
6290static void jjINT_S_TO_ID(int n,int *e, leftv res)
6291{
6292 if (n==0) n=1;
6293 ideal l=idInit(n,1);
6294 int i;
6295 poly p;
6296 for(i=rVar(currRing);i>0;i--)
6297 {
6298 if (e[i]>0)
6299 {
6300 n--;
6301 p=pOne();
6302 pSetExp(p,i,1);
6303 pSetm(p);
6304 l->m[n]=p;
6305 if (n==0) break;
6306 }
6307 }
6308 res->data=(char*)l;
6310 omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6311}
6313{
6314 int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6315 int n=pGetVariables((poly)u->Data(),e);
6316 jjINT_S_TO_ID(n,e,res);
6317 return FALSE;
6318}
6319
6321{
6322 int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6323 ideal I=(ideal)u->Data();
6324 int i;
6325 int n=0;
6326 for(i=I->nrows*I->ncols-1;i>=0;i--)
6327 {
6328 int n0=pGetVariables(I->m[i],e);
6329 if (n0>n) n=n0;
6330 }
6331 jjINT_S_TO_ID(n,e,res);
6332 return FALSE;
6333}
6334
6335void paPrint(const char *n,package p)
6336{
6337 Print(" %s (",n);
6338 switch (p->language)
6339 {
6340 case LANG_SINGULAR: PrintS("S"); break;
6341 case LANG_C: PrintS("C"); break;
6342 case LANG_TOP: PrintS("T"); break;
6343 case LANG_MAX: PrintS("M"); break;
6344 case LANG_NONE: PrintS("N"); break;
6345 default: PrintS("U");
6346 }
6347 if(p->libname!=NULL)
6348 Print(",%s", p->libname);
6349 PrintS(")");
6350}
6351
6353{
6354 intvec *aa=(intvec*)a->Data();
6355 sleftv tmp_out;
6356 sleftv tmp_in;
6357 leftv curr=res;
6358 BOOLEAN bo=FALSE;
6359 for(int i=0;i<aa->length(); i++)
6360 {
6361 tmp_in.Init();
6362 tmp_in.rtyp=INT_CMD;
6363 tmp_in.data=(void*)(long)(*aa)[i];
6364 if (proc==NULL)
6365 bo=iiExprArith1(&tmp_out,&tmp_in,op);
6366 else
6367 bo=jjPROC(&tmp_out,proc,&tmp_in);
6368 if (bo)
6369 {
6370 res->CleanUp(currRing);
6371 Werror("apply fails at index %d",i+1);
6372 return TRUE;
6373 }
6374 if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6375 else
6376 {
6378 curr=curr->next;
6379 memcpy(curr,&tmp_out,sizeof(tmp_out));
6380 }
6381 }
6382 return FALSE;
6383}
6385{
6386 WerrorS("not implemented");
6387 return TRUE;
6388}
6390{
6391 WerrorS("not implemented");
6392 return TRUE;
6393}
6395{
6396 lists aa=(lists)a->Data();
6397 if (aa->nr==-1) /* empty list*/
6398 {
6400 l->Init();
6401 res->data=(void *)l;
6402 return FALSE;
6403 }
6404 sleftv tmp_out;
6405 sleftv tmp_in;
6406 leftv curr=res;
6407 BOOLEAN bo=FALSE;
6408 for(int i=0;i<=aa->nr; i++)
6409 {
6410 tmp_in.Init();
6411 tmp_in.Copy(&(aa->m[i]));
6412 if (proc==NULL)
6413 bo=iiExprArith1(&tmp_out,&tmp_in,op);
6414 else
6415 bo=jjPROC(&tmp_out,proc,&tmp_in);
6416 tmp_in.CleanUp();
6417 if (bo)
6418 {
6419 res->CleanUp(currRing);
6420 Werror("apply fails at index %d",i+1);
6421 return TRUE;
6422 }
6423 if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6424 else
6425 {
6427 curr=curr->next;
6428 memcpy(curr,&tmp_out,sizeof(tmp_out));
6429 }
6430 }
6431 return FALSE;
6432}
6434{
6435 res->Init();
6436 res->rtyp=a->Typ();
6437 switch (res->rtyp /*a->Typ()*/)
6438 {
6439 case INTVEC_CMD:
6440 case INTMAT_CMD:
6441 return iiApplyINTVEC(res,a,op,proc);
6442 case BIGINTMAT_CMD:
6443 return iiApplyBIGINTMAT(res,a,op,proc);
6444 case IDEAL_CMD:
6445 case MODUL_CMD:
6446 case MATRIX_CMD:
6447 return iiApplyIDEAL(res,a,op,proc);
6448 case LIST_CMD:
6449 return iiApplyLIST(res,a,op,proc);
6450 }
6451 WerrorS("first argument to `apply` must allow an index");
6452 return TRUE;
6453}
6454
6456{
6457 // assume a: level
6458 if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6459 {
6460 if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6461 char assume_yylinebuf[80];
6462 strncpy(assume_yylinebuf,my_yylinebuf,79);
6463 int lev=(long)a->Data();
6464 int startlev=0;
6465 idhdl h=ggetid("assumeLevel");
6466 if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6467 if(lev <=startlev)
6468 {
6469 BOOLEAN bo=b->Eval();
6470 if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6471 if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6472 if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6473 }
6474 }
6475 b->CleanUp();
6476 a->CleanUp();
6477 return FALSE;
6478}
6479
6480#include "libparse.h"
6481
6482BOOLEAN iiARROW(leftv r, char* a, char *s)
6483{
6484 size_t len=strlen(a)+strlen(s)+30; /* max. 27 currently */
6485 char *ss=(char*)omAlloc(len);
6486 // find end of s:
6487 int end_s=strlen(s);
6488 while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6489 s[end_s+1]='\0';
6490 char *name=(char *)omAlloc(len);
6491 snprintf(name,len,"%s->%s",a,s);
6492 // find start of last expression
6493 int start_s=end_s-1;
6494 while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6495 if (start_s<0) // ';' not found
6496 {
6497 snprintf(ss,len,"parameter def %s;return(%s);\n",a,s);
6498 }
6499 else // s[start_s] is ';'
6500 {
6501 s[start_s]='\0';
6502 snprintf(ss,len,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6503 }
6504 r->Init();
6505 // now produce procinfo for PROC_CMD:
6506 r->data = (void *)omAlloc0Bin(procinfo_bin);
6507 ((procinfo *)(r->data))->language=LANG_NONE;
6509 ((procinfo *)r->data)->data.s.body=ss;
6510 omFree(name);
6511 r->rtyp=PROC_CMD;
6512 //r->rtyp=STRING_CMD;
6513 //r->data=ss;
6514 return FALSE;
6515}
6516
6518{
6519 char* ring_name=omStrDup((char*)r->Name());
6520 int t=arg->Typ();
6521 if (t==RING_CMD)
6522 {
6523 sleftv tmp;
6524 tmp.Init();
6525 tmp.rtyp=IDHDL;
6526 idhdl h=rDefault(ring_name);
6527 tmp.data=(char*)h;
6528 if (h!=NULL)
6529 {
6530 tmp.name=h->id;
6531 BOOLEAN b=iiAssign(&tmp,arg);
6532 if (b) return TRUE;
6533 rSetHdl(ggetid(ring_name));
6534 omFree(ring_name);
6535 return FALSE;
6536 }
6537 else
6538 return TRUE;
6539 }
6540 else if (t==CRING_CMD)
6541 {
6542 sleftv tmp;
6543 sleftv n;
6544 n.Init();
6545 n.name=ring_name;
6546 if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6547 if (iiAssign(&tmp,arg)) return TRUE;
6548 //Print("create %s\n",r->Name());
6549 //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6550 return FALSE;
6551 }
6552 //Print("create %s\n",r->Name());
6553 //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6554 return TRUE;// not handled -> error for now
6555}
6556
6557static void iiReportTypes(int nr,int t,const short *T)
6558{
6559 char buf[250];
6560 buf[0]='\0';
6561 if (nr==0)
6562 snprintf(buf,250,"wrong length of parameters(%d), expected ",t);
6563 else
6564 snprintf(buf,250,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6565 for(int i=1;i<=T[0];i++)
6566 {
6567 strcat(buf,"`");
6568 strcat(buf,Tok2Cmdname(T[i]));
6569 strcat(buf,"`");
6570 if (i<T[0]) strcat(buf,",");
6571 }
6572 WerrorS(buf);
6573}
6574
6575BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6576{
6577 int l=0;
6578 if (args==NULL)
6579 {
6580 if (type_list[0]==0) return TRUE;
6581 }
6582 else l=args->listLength();
6583 if (l!=(int)type_list[0])
6584 {
6585 if (report) iiReportTypes(0,l,type_list);
6586 return FALSE;
6587 }
6588 for(int i=1;i<=l;i++,args=args->next)
6589 {
6590 short t=type_list[i];
6591 if (t!=ANY_TYPE)
6592 {
6593 if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6594 || (t!=args->Typ()))
6595 {
6596 if (report) iiReportTypes(i,args->Typ(),type_list);
6597 return FALSE;
6598 }
6599 }
6600 }
6601 return TRUE;
6602}
6603
6604void iiSetReturn(const leftv source)
6605{
6606 if ((source->next==NULL)&&(source->e==NULL))
6607 {
6608 if ((source->rtyp!=IDHDL)&&(source->rtyp!=ALIAS_CMD))
6609 {
6610 memcpy(&iiRETURNEXPR,source,sizeof(sleftv));
6611 source->Init();
6612 return;
6613 }
6614 if (source->rtyp==IDHDL)
6615 {
6616 if ((IDLEV((idhdl)source->data)==myynest)
6617 &&(IDTYP((idhdl)source->data)!=RING_CMD))
6618 {
6620 iiRETURNEXPR.rtyp=IDTYP((idhdl)source->data);
6621 iiRETURNEXPR.data=IDDATA((idhdl)source->data);
6622 iiRETURNEXPR.flag=IDFLAG((idhdl)source->data);
6624 IDATTR((idhdl)source->data)=NULL;
6625 IDDATA((idhdl)source->data)=NULL;
6626 source->name=NULL;
6627 source->attribute=NULL;
6628 return;
6629 }
6630 }
6631 }
6632 iiRETURNEXPR.Copy(source);
6633}
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:411
ring r
Definition: algext.h:37
struct for passing initialization parameters to naInitChar
Definition: algext.h:37
void atSet(idhdl root, char *name, void *data, int typ)
Definition: attrib.cc:153
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:132
long int64
Definition: auxiliary.h:68
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
CanonicalForm num(const CanonicalForm &f)
CanonicalForm den(const CanonicalForm &f)
CanonicalForm Lc(const CanonicalForm &f)
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
Variable x
Definition: cfModGcd.cc:4082
int p
Definition: cfModGcd.cc:4078
CanonicalForm cf
Definition: cfModGcd.cc:4083
CanonicalForm b
Definition: cfModGcd.cc:4103
void mu(int **points, int sizePoints)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:505
FILE * f
Definition: checklibs.c:9
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:16
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:345
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:948
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1571
int * Zp_roots(poly p, const ring r)
Definition: clapsing.cc:2188
int get_num_si()
Definition: GMPrat.cc:138
int get_den_si()
Definition: GMPrat.cc:152
char name() const
Definition: variable.cc:122
Variable next() const
Definition: factory.h:146
char * buffer
Definition: fevoices.h:69
char * filename
Definition: fevoices.h:63
long fptr
Definition: fevoices.h:70
Matrices of numbers.
Definition: bigintmat.h:51
Definition: idrec.h:35
idhdl get(const char *s, int lev)
Definition: ipid.cc:72
int typ
Definition: idrec.h:43
idhdl next
Definition: idrec.h:38
attr attribute
Definition: idrec.h:41
Definition: intvec.h:23
void makeVector()
Definition: intvec.h:102
void show(int mat=0, int spaces=0) const
Definition: intvec.cc:149
int min_in()
Definition: intvec.h:121
int length() const
Definition: intvec.h:94
int rows() const
Definition: intvec.h:96
int & cols()
Definition: matpol.h:24
int & rows()
Definition: matpol.h:23
Definition: ipid.h:56
virtual number getSubDet()
Definition: mpr_base.h:37
virtual ideal getMatrix()
Definition: mpr_base.h:31
virtual IStateType initState() const
Definition: mpr_base.h:41
void solve_all()
Definition: mpr_numeric.cc:858
rootContainer ** roots
Definition: mpr_numeric.h:167
bool found_roots
Definition: mpr_numeric.h:172
bool success()
Definition: mpr_numeric.h:162
void arrange()
Definition: mpr_numeric.cc:883
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:66
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:300
int getAnzRoots()
Definition: mpr_numeric.h:97
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:437
int getAnzElems()
Definition: mpr_numeric.h:95
Definition: attrib.h:21
attr get(const char *s)
Definition: attrib.cc:93
void * CopyA()
Definition: subexpr.cc:2160
int atyp
Definition: attrib.h:27
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:195
intvec * zrovToIV()
BOOLEAN mapFromMatrix(matrix m)
int icase
Definition: mpr_numeric.h:201
void compute()
matrix mapToMatrix(matrix m)
intvec * posvToIV()
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * CopyD(int t)
Definition: subexpr.cc:710
int Typ()
Definition: subexpr.cc:1030
const char * name
Definition: subexpr.h:87
int rtyp
Definition: subexpr.h:91
void * Data()
Definition: subexpr.cc:1173
void Init()
Definition: subexpr.h:107
BOOLEAN RingDependend()
Definition: subexpr.cc:418
leftv next
Definition: subexpr.h:86
const char * Name()
Definition: subexpr.h:120
int listLength()
Definition: subexpr.cc:51
void Copy(leftv e)
Definition: subexpr.cc:685
void * data
Definition: subexpr.h:88
void CleanUp(ring r=currRing)
Definition: subexpr.cc:348
attr * Attribute()
Definition: subexpr.cc:1473
BITSET flag
Definition: subexpr.h:90
Subexpr e
Definition: subexpr.h:105
attr attribute
Definition: subexpr.h:89
Definition: lists.h:24
sleftv * m
Definition: lists.h:46
void Clean(ring r=currRing)
Definition: lists.h:26
INLINE_THIS void Init(int l=0)
int nr
Definition: lists.h:44
spectrumPolyNode * root
Definition: splist.h:60
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
Definition: semic.h:64
int mu
Definition: semic.h:67
void copy_new(int)
Definition: semic.cc:54
Rational * s
Definition: semic.h:70
int mult_spectrum(spectrum &)
Definition: semic.cc:396
int n
Definition: semic.h:69
int pg
Definition: semic.h:68
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
int * w
Definition: semic.h:71
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:63
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3060
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2922
@ denseResMat
Definition: mpr_base.h:65
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:29
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:93
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:146
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
Definition: coeffs.h:544
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:448
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:836
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:813
int GFDegree
Definition: coeffs.h:95
@ n_R
single prescision (6,6) real numbers
Definition: coeffs.h:31
@ n_GF
\GF{p^n < 2^16}
Definition: coeffs.h:32
@ n_Q
rational (GMP) numbers
Definition: coeffs.h:30
@ n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
@ n_long_R
real floating point (GMP) numbers
Definition: coeffs.h:33
@ n_Z2m
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
@ n_Zp
\F{p < 2^31}
Definition: coeffs.h:29
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
@ n_Z
only used if HAVE_RINGS is defined
Definition: coeffs.h:43
@ n_long_C
complex floating point (GMP) numbers
Definition: coeffs.h:41
short float_len2
additional char-flags, rInit
Definition: coeffs.h:102
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:829
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:548
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:697
const char * par_name
parameter name
Definition: coeffs.h:103
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:775
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:414
const unsigned short fftable[]
Definition: ffields.cc:27
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:437
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:727
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:452
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:960
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
Definition: coeffs.h:539
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:535
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:907
short float_len
additional char-flags, rInit
Definition: coeffs.h:101
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
const char * GFPar_name
Definition: coeffs.h:96
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:891
int GFChar
Definition: coeffs.h:94
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:915
Creation data needed for finite fields.
Definition: coeffs.h:93
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:76
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
bool found
Definition: facFactorize.cc:55
CanonicalForm buf2
Definition: facFqBivar.cc:75
CFList tmp2
Definition: facFqBivar.cc:74
const ExtensionInfo & info
< [in] sqrfree poly
int j
Definition: facHensel.cc:110
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
Definition: factory.h:189
VAR short errorreported
Definition: feFopen.cc:23
void WerrorS(const char *s)
Definition: feFopen.cc:24
VAR int yylineno
Definition: febase.cc:40
VAR char my_yylinebuf[80]
Definition: febase.cc:44
VAR int myynest
Definition: febase.cc:41
if(!FE_OPT_NO_SHELL_FLAG)(void) system(sys)
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:32
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:166
VAR Voice * currentVoice
Definition: fevoices.cc:49
const char * VoiceName()
Definition: fevoices.cc:58
const char sNoName_fe[]
Definition: fevoices.cc:57
void VoiceBackTrack()
Definition: fevoices.cc:77
@ BT_execute
Definition: fevoices.h:23
@ BT_proc
Definition: fevoices.h:20
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:87
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:301
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:140
#define STATIC_VAR
Definition: globaldefs.h:7
#define VAR
Definition: globaldefs.h:5
@ PLUSPLUS
Definition: grammar.cc:274
@ MINUSMINUS
Definition: grammar.cc:271
@ IDEAL_CMD
Definition: grammar.cc:284
@ MATRIX_CMD
Definition: grammar.cc:286
@ BIGINTMAT_CMD
Definition: grammar.cc:278
@ GE
Definition: grammar.cc:269
@ EQUAL_EQUAL
Definition: grammar.cc:268
@ MAP_CMD
Definition: grammar.cc:285
@ PROC_CMD
Definition: grammar.cc:280
@ LE
Definition: grammar.cc:270
@ INTMAT_CMD
Definition: grammar.cc:279
@ MODUL_CMD
Definition: grammar.cc:287
@ SMATRIX_CMD
Definition: grammar.cc:291
@ VECTOR_CMD
Definition: grammar.cc:292
@ NOTEQUAL
Definition: grammar.cc:273
@ DOTDOT
Definition: grammar.cc:267
@ COLONCOLON
Definition: grammar.cc:275
@ NUMBER_CMD
Definition: grammar.cc:288
@ POLY_CMD
Definition: grammar.cc:289
@ RING_CMD
Definition: grammar.cc:281
const char * currid
Definition: grammar.cc:171
int yyparse(void)
Definition: grammar.cc:2111
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
Definition: hdegree.cc:1100
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:384
STATIC_VAR poly last
Definition: hdegree.cc:1172
VAR omBin indlist_bin
Definition: hdegree.cc:29
VAR int hMu2
Definition: hdegree.cc:27
VAR int hCo
Definition: hdegree.cc:27
VAR indset ISet
Definition: hdegree.cc:353
VAR long hMu
Definition: hdegree.cc:28
VAR indset JSet
Definition: hdegree.cc:353
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:35
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:564
monf hCreate(int Nvar)
Definition: hutil.cc:996
VAR varset hvar
Definition: hutil.cc:18
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1010
VAR int hNexist
Definition: hutil.cc:19
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:140
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:621
VAR scfmon hwork
Definition: hutil.cc:16
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:174
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:565
VAR scmon hpure
Definition: hutil.cc:17
VAR scfmon hrad
Definition: hutil.cc:16
VAR monf radmem
Definition: hutil.cc:21
VAR int hNpure
Definition: hutil.cc:19
VAR int hNrad
Definition: hutil.cc:19
scfmon hInit(ideal S, ideal Q, int *Nexist)
Definition: hutil.cc:31
VAR scfmon hexist
Definition: hutil.cc:16
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:411
VAR int hNvar
Definition: hutil.cc:19
scmon * scfmon
Definition: hutil.h:15
indlist * indset
Definition: hutil.h:28
int * varset
Definition: hutil.h:16
int * scmon
Definition: hutil.h:14
int binom(int n, int r)
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:177
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal * resolvente
Definition: ideals.h:18
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
intvec * ivCopy(const intvec *o)
Definition: intvec.h:145
#define IMATELEM(M, I, J)
Definition: intvec.h:85
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:9547
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:9137
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1963
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:435
idhdl ggetid(const char *n)
Definition: ipid.cc:581
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:445
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:279
VAR package basePack
Definition: ipid.cc:58
void ipListFlag(idhdl h)
Definition: ipid.cc:619
VAR proclevel * procstack
Definition: ipid.cc:52
VAR idhdl currRingHdl
Definition: ipid.cc:59
VAR package currPack
Definition: ipid.cc:57
VAR idhdl currPackHdl
Definition: ipid.cc:55
idhdl packFindHdl(package r)
Definition: ipid.cc:831
VAR coeffs coeffs_BIGINT
Definition: ipid.cc:50
#define IDMAP(a)
Definition: ipid.h:135
#define IDMATRIX(a)
Definition: ipid.h:134
#define IDSTRING(a)
Definition: ipid.h:136
#define IDNEXT(a)
Definition: ipid.h:118
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:145
#define IDDATA(a)
Definition: ipid.h:126
#define IDPROC(a)
Definition: ipid.h:140
#define setFlag(A, F)
Definition: ipid.h:113
#define IDINTVEC(a)
Definition: ipid.h:128
#define IDIDEAL(a)
Definition: ipid.h:133
#define IDFLAG(a)
Definition: ipid.h:120
#define IDPOLY(a)
Definition: ipid.h:130
#define IDID(a)
Definition: ipid.h:122
#define IDROOT
Definition: ipid.h:19
#define IDINT(a)
Definition: ipid.h:125
#define FLAG_QRING_DEF
Definition: ipid.h:109
#define IDPACKAGE(a)
Definition: ipid.h:139
#define IDLEV(a)
Definition: ipid.h:121
#define IDRING(a)
Definition: ipid.h:127
#define IDTYP(a)
Definition: ipid.h:119
#define FLAG_STD
Definition: ipid.h:106
#define IDLIST(a)
Definition: ipid.h:137
#define IDATTR(a)
Definition: ipid.h:123
VAR int iiRETURNEXPR_len
Definition: iplib.cc:475
INST_VAR sleftv iiRETURNEXPR
Definition: iplib.cc:474
VAR ring * iiLocalRing
Definition: iplib.cc:473
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:197
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:1050
lists rDecompose(const ring r)
Definition: ipshell.cc:2162
semicState
Definition: ipshell.cc:3437
@ semicListWrongNumberOfNumerators
Definition: ipshell.cc:3452
@ semicListPGWrong
Definition: ipshell.cc:3466
@ semicListFirstElementWrongType
Definition: ipshell.cc:3444
@ semicListPgNegative
Definition: ipshell.cc:3457
@ semicListSecondElementWrongType
Definition: ipshell.cc:3445
@ semicListMilnorWrong
Definition: ipshell.cc:3465
@ semicListMulNegative
Definition: ipshell.cc:3460
@ semicListFourthElementWrongType
Definition: ipshell.cc:3447
@ semicListWrongNumberOfDenominators
Definition: ipshell.cc:3453
@ semicListNotMonotonous
Definition: ipshell.cc:3463
@ semicListNotSymmetric
Definition: ipshell.cc:3462
@ semicListNNegative
Definition: ipshell.cc:3451
@ semicListDenNegative
Definition: ipshell.cc:3459
@ semicListTooShort
Definition: ipshell.cc:3441
@ semicListTooLong
Definition: ipshell.cc:3442
@ semicListThirdElementWrongType
Definition: ipshell.cc:3446
@ semicListMuNegative
Definition: ipshell.cc:3456
@ semicListNumNegative
Definition: ipshell.cc:3458
@ semicMulNegative
Definition: ipshell.cc:3439
@ semicListWrongNumberOfMultiplicities
Definition: ipshell.cc:3454
@ semicOK
Definition: ipshell.cc:3438
@ semicListFifthElementWrongType
Definition: ipshell.cc:3448
@ semicListSixthElementWrongType
Definition: ipshell.cc:3449
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6352
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6312
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:2123
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:121
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4430
VAR idhdl iiCurrProc
Definition: ipshell.cc:81
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:947
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:366
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1377
STATIC_VAR BOOLEAN iiNoKeepRing
Definition: ipshell.cc:84
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1199
static void rRenameVars(ring R)
Definition: ipshell.cc:2406
void iiCheckPack(package &p)
Definition: ipshell.cc:1631
void rKill(ring r)
Definition: ipshell.cc:6182
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6575
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6433
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:425
VAR BOOLEAN iiDebugMarker
Definition: ipshell.cc:1064
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5627
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:615
int iiRegularity(lists L)
Definition: ipshell.cc:1038
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4680
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1950
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1820
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:847
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6482
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4513
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3172
void killlocals(int v)
Definition: ipshell.cc:386
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6394
idhdl rDefault(const char *s)
Definition: ipshell.cc:1645
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1854
int exprlist_length(leftv v)
Definition: ipshell.cc:552
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3093
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1607
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4186
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:5081
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6290
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1104
VAR leftv iiCurrArgs
Definition: ipshell.cc:80
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4823
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3349
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1730
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6389
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:149
void list_error(semicState state)
Definition: ipshell.cc:3470
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:3071
const char * iiTwoOps(int t)
Definition: ipshell.cc:88
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1274
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:981
spectrumState
Definition: ipshell.cc:3553
@ spectrumWrongRing
Definition: ipshell.cc:3560
@ spectrumOK
Definition: ipshell.cc:3554
@ spectrumDegenerate
Definition: ipshell.cc:3559
@ spectrumUnspecErr
Definition: ipshell.cc:3562
@ spectrumNotIsolated
Definition: ipshell.cc:3558
@ spectrumBadPoly
Definition: ipshell.cc:3556
@ spectrumNoSingularity
Definition: ipshell.cc:3557
@ spectrumZero
Definition: ipshell.cc:3555
@ spectrumNoHC
Definition: ipshell.cc:3561
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6455
void iiSetReturn(const leftv source)
Definition: ipshell.cc:6604
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6517
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4472
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3812
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1702
void iiDebug()
Definition: ipshell.cc:1066
syStrategy syConvList(lists li)
Definition: ipshell.cc:3256
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4135
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1261
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2261
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1587
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:1065
static void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1890
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3571
const short MAX_SHORT
Definition: ipshell.cc:5615
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3149
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:6020
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3303
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5188
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5307
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2493
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3386
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
Definition: ipshell.cc:6271
void test_cmd(int i)
Definition: ipshell.cc:514
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6557
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1918
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3342
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1413
static void rDecompose_23456(const ring r, lists L)
Definition: ipshell.cc:2022
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3362
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:330
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
Definition: ipshell.cc:4657
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4255
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:295
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4553
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4571
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1617
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
Definition: ipshell.cc:2785
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4565
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6384
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:1002
const char * lastreserved
Definition: ipshell.cc:82
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5579
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3184
void type_cmd(leftv v)
Definition: ipshell.cc:254
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:588
void paPrint(const char *n, package p)
Definition: ipshell.cc:6335
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:937
void rSetHdl(idhdl h)
Definition: ipshell.cc:5128
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3325
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2313
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1512
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:968
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4104
lists getList(spectrum &spec)
Definition: ipshell.cc:3398
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:4924
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6320
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2448
STATIC_VAR jList * T
Definition: janet.cc:30
STATIC_VAR Poly * h
Definition: janet.cc:971
STATIC_VAR jList * Q
Definition: janet.cc:30
VAR BITSET validOpts
Definition: kstd1.cc:60
VAR BITSET kOptions
Definition: kstd1.cc:45
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2449
VAR denominator_list DENOMINATOR_LIST
Definition: kutil.cc:84
denominator_list next
Definition: kutil.h:65
#define pi
Definition: libparse.cc:1145
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
Definition: old.gring.cc:2692
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:403
VAR omBin slists_bin
Definition: lists.cc:23
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:222
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:338
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:239
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:163
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:45
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:57
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
ip_smatrix * matrix
Definition: matpol.h:43
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
#define assume(x)
Definition: mod2.h:389
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
#define pSetCoeff0(p, n)
Definition: monomials.h:59
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3191
@ mprOk
Definition: mpr_base.h:98
EXTERN_VAR size_t gmp_output_digits
Definition: mpr_base.h:115
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:704
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:327
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:60
slists * lists
Definition: mpr_numeric.h:146
void report(const char *fmt, const char *name)
Definition: shared.cc:666
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nDelete(n)
Definition: numbers.h:16
#define nIsZero(n)
Definition: numbers.h:19
#define nSetMap(R)
Definition: numbers.h:43
#define nIsMOne(n)
Definition: numbers.h:26
#define nCopy(n)
Definition: numbers.h:15
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:46
#define nInvers(a)
Definition: numbers.h:33
#define SHORT_REAL_LENGTH
Definition: numbers.h:57
#define nIsOne(n)
Definition: numbers.h:25
#define nInit(i)
Definition: numbers.h:24
#define omStrDup(s)
Definition: omAllocDecl.h:263
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
#define NULL
Definition: omList.c:12
VAR unsigned si_opt_2
Definition: options.c:6
VAR unsigned si_opt_1
Definition: options.c:5
#define V_DEF_RES
Definition: options.h:50
#define BVERBOSE(a)
Definition: options.h:35
#define TEST_V_ALLWARN
Definition: options.h:142
#define Sy_bit(x)
Definition: options.h:31
#define V_REDEFINE
Definition: options.h:45
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4130
poly p_One(const ring r)
Definition: p_polys.cc:1313
static int pLength(poly a)
Definition: p_polys.h:190
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:1002
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1320
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1507
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:971
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatibility layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
Definition: polys.h:282
#define pTest(p)
Definition: polys.h:414
#define pDelete(p_ptr)
Definition: polys.h:186
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pNeg(p)
Definition: polys.h:198
#define pDiff(a, b)
Definition: polys.h:296
void pNorm(poly p)
Definition: polys.h:362
#define pSub(a, b)
Definition: polys.h:287
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition: polys.h:115
#define pGetVariables(p, e)
Definition: polys.h:251
#define pSetComp(p, v)
Definition: polys.h:38
void wrp(poly p)
Definition: polys.h:310
void pWrite(poly p)
Definition: polys.h:308
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define pIsPurePower(p)
Definition: polys.h:248
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
poly * polyset
Definition: polys.h:259
#define pDecrExp(p, i)
Definition: polys.h:44
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:192
int IsPrime(int p)
Definition: prime.cc:61
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
EXTERN_VAR int traceit
Definition: reporter.h:24
#define TRACE_SHOW_RINGS
Definition: reporter.h:36
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3459
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:77
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:185
VAR omBin sip_sring_bin
Definition: ring.cc:43
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4634
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1421
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:175
rRingOrder_t rOrderName(char *ordername)
Definition: ring.cc:507
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:450
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
Definition: ring.cc:1746
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5147
static int sign(int x)
Definition: ring.cc:3436
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:518
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:529
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:509
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:500
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:545
static int rBlocks(const ring r)
Definition: ring.h:568
static ring rIncRefCnt(ring r)
Definition: ring.h:840
static BOOLEAN rField_is_Zn(const ring r)
Definition: ring.h:512
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:599
static int rInternalChar(const ring r)
Definition: ring.h:689
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_lp
Definition: ring.h:77
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:539
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:506
static void rDecRefCnt(ring r)
Definition: ring.h:841
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:625
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:542
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:515
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:521
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:592
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:762
#define rTest(r)
Definition: ring.h:785
#define rField_is_Ring(R)
Definition: ring.h:485
idrec * idhdl
Definition: ring.h:21
void myychangebuffer()
Definition: scanner.cc:2311
VAR int sdb_flags
Definition: sdb.cc:31
#define mpz_sgn1(A)
Definition: si_gmp.h:18
int status int void size_t count
Definition: si_signals.h:59
int status int void * buf
Definition: si_signals.h:59
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
#define R
Definition: sirandom.c:27
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
ip_package * package
Definition: structs.h:43
sleftv * leftv
Definition: structs.h:57
char * char_ptr
Definition: structs.h:53
@ isNotHomog
Definition: structs.h:36
#define BITSET
Definition: structs.h:16
#define loop
Definition: structs.h:75
int * int_ptr
Definition: structs.h:54
VAR omBin procinfo_bin
Definition: subexpr.cc:42
INST_VAR sleftv sLastPrinted
Definition: subexpr.cc:46
VAR BOOLEAN siq
Definition: subexpr.cc:48
@ LANG_MAX
Definition: subexpr.h:22
@ LANG_SINGULAR
Definition: subexpr.h:22
@ LANG_NONE
Definition: subexpr.h:22
@ LANG_C
Definition: subexpr.h:22
@ LANG_TOP
Definition: subexpr.h:22
BOOLEAN RingDependend(int t)
Definition: subexpr.h:142
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:771
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:355
intvec ** hilb_coeffs
Definition: syz.h:46
resolvente minres
Definition: syz.h:58
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1495
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1641
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1755
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2198
short list_length
Definition: syz.h:62
resolvente res
Definition: syz.h:47
resolvente fullres
Definition: syz.h:57
intvec ** weights
Definition: syz.h:45
ssyStrategy * syStrategy
Definition: syz.h:36
resolvente orderedRes
Definition: syz.h:48
int length
Definition: syz.h:60
#define IDHDL
Definition: tok.h:31
@ ALIAS_CMD
Definition: tok.h:34
@ BIGINT_CMD
Definition: tok.h:38
@ CRING_CMD
Definition: tok.h:56
@ LIST_CMD
Definition: tok.h:118
@ INTVEC_CMD
Definition: tok.h:101
@ PACKAGE_CMD
Definition: tok.h:149
@ CMATRIX_CMD
Definition: tok.h:46
@ DEF_CMD
Definition: tok.h:58
@ CNUMBER_CMD
Definition: tok.h:47
@ LINK_CMD
Definition: tok.h:117
@ QRING_CMD
Definition: tok.h:158
@ STRING_CMD
Definition: tok.h:185
@ INT_CMD
Definition: tok.h:96
#define ANY_TYPE
Definition: tok.h:30
struct for passing initialization parameters to naInitChar
Definition: transext.h:88
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.cc:78